
Measurement and interpretation of micro

benchmark and application energy use on the

Cray XC30

Brian Austin, and Nicholas J. Wright

⇤

August 29, 2014

Abstract

Understanding patterns of application energy use is key to reaching
future HPC e�ciency goals. We have measured the sensitivity of en-
ergy use to CPU frequency for several microbenchmarks and applications
on a Cray XC30. First order fits to the performance and power data
are su�cient to describe the energy used by these applications. Exam-
ination of the resulting energy model shows that the and application’s
energy/frequency profiles have minima only if a) the frequency change
crosses an architectural balance point that is performance-critical for the
particular application or b) a significant fraction of the runtime is spent
in o↵-chip operations or c) there is su�cient static power drawn to mo-
tivate a race-to-halt. All three forms of energy minima are represented
in our sample of HPC applications. The energy-optimal frequencies on
this architecture are: MILC (1.8 GHz), GTC (3.6 GHz) and Mini-DFT
(1.6-1.8 GHz).

1 Introduction

The first Top500 list was released in 1993 [1]. Throughout that time, the
concomitant increases in power consumption of High Performance Computing
(HPC) platforms has grown faster (20% annually) than the rate of monetary
inflation (3% annually). Today, most “powerful” system on the most recent
Top500 draws most almost 18 MW. At $1M/MWy (a coarse estimate for present
electricity prices in the United States), this corresponds to $18 M/year. Thus
the power draw and the total energy use are increasingly prominent concerns for
operating an HPC facility, especially as it is possible to envision a future where
the energy costs over the lifetime of the machine are greater than the capital
purchase price. An additional concern is the rate of change in power draw, as

⇤
B. Austin and N. Wright are with the National Energy Research Scientific Comput-

ing Center, Lawerence Berkeley National Laboratory, Berkeley, CA, 94720 USA e-mail:

{baustin,njwright}@lbl.gov.

1

electricity companies charge more for customers who’s demands fluctuate rather
than stay fixed.

To computing industry in general has been working on these issues for several
years now. Metrics such as PUE[2] have been used to motivate increasing the
overall e�ciency of a datacenter by decreasing the energy overhead of maintain-
ing the surrounding facility. Also, chip manufacturers and system integrators
are pursuing advances in architecture and packaging to reduce the power de-
mands of the system. Among these architectural trends is a shift toward chips
with a larger number of (possibly less complex) cores running at slower frequen-
cies. HPC users have little or no control over these design choices, yet it is their
use of the system and the behavior of their applications that drive the systems’
energy use. In this paper, we aim to understand which patterns of memory
access and computation contribute most to application energy use on a current
HPC platform, Edison a Cray XC30 at NERSC. We also examine which appli-
cations can reduce their energy use by running at lower CPU frequencies. This
work was motivated by the recent addition of functionality to the XC30 where
i) the CPU frequency could be specified for each instance of an application run
and ii) the ability to measure the total energy used on a per node basis.

The principle contributions of this paper are:

• We provide measurements of the sensitivity of performance and power
to CPU frequency for elementary computational and memory access mi-
crobenchmarks.

• We produce a simple energy model by fitting performance and power data
that identifies and explains the presence of three (four if you count f=0)
types of minima on the energy vs. frequency curve.

• Our results show that the energy-optimal frequencies on this architecture
are di↵erent for each of the three applications discussed, MILC (1.8 GHz),
GTC (3.6 GHz) and Mini-DFT (1.6-1.8 GHz), which can be explained by
an knowledge of their performance characteristics. Our results also indi-
cate that the energy savings by running at these energy-optimal frequen-
cies are less than 10% and always come with the a performance penalty.

The remainder of this paper is organized as follows. Section 2 describes the
hardware platform used for our experiments and its interfaces for measuring
energy and adjusting power states. The power and performance of several mi-
crobenchmarks are measured in section 3. These data are used to motivate the
form of the energy model described in section 4. Section 5 measures the en-
ergy/performance tradeo↵s for three scientific HPC applications (MILC, GTC
and MiniDFT) and compares these results to trends in the microbenchmark
data. Section 6 frames the contributions of this paper in the context of related
work. Our conclusions are summarized in section 7.

2

2 Experimental Platform

2.1 Computational System

All of our experiments use the “Edison” system, a Cray XC30 system located
at NERSC. As of August 2014, Edison is composed of 5576 compute nodes
connected in a dragonfly topology by a custom Cray Aries network. Each node
has two 12-core Intel “Ivy-Bridge” E5-2695 processors operating at a nominal
frequency of 2.4 GHz, o↵ering a theoretical peak flop rate of 460 GF/s/node.
The actual CPU frequency varies and may increase up to 3.2 GHz due to Intel’s
Turbo Boost features.[?] The nodes also provide 64 GB of DDR3-1600 memory,
with a theoretical peak bandwidth of 102 GB/s/node.

2.2 Power Measurements

The XC30 architecture includes several features to support power monitoring
and management. The Ivy-Bridge processors have Intel Running Average Power
Limit (RAPL) counters that estimate the energy used by the chip package,
cores or DRAM by counting events that take place on the chip. XC30 nodes
include an energy monitoring component that measures the total energy used
by the node. The Cray power monitoring (PM) counters sample this energy
with a frequency of approximately 10 Hz and write the result to virtual files in
/proc/cray/pm counters. A PAPI interface[3] to the Cray PM counters is also
provided, which enables sampling experiments to attribute energy and power
costs to specific functions without requiring undue source code instrumentation.
Sets of four nodes and an Aries router are packaged into a blade, which has its
own power monitoring component. Blade energy use is sampled at a frequency
of 1 Hz, then summed and logged on a System Environmental Data Collection
(SEDC) server.

Our experiments are based on the node-level Cray PM counters because
direct access to RAPL counters is not available to unprivileged users on Edison
and the SEDC logs do not have su�cient spatial or temporal resolution for our
purposes. We created a small library to record the current state of the energy
and time counters and then inserted calls to this at the beginning and end of
each applications source code, as well as around regions of interest. At the end
of the application run one MPI process on each node computes the di↵erence
between the final and initial counter values. This data is summed over nodes
and the total energy, average wall time and average power use are appended to
the application output.

2.2.1 CPU Frequency Control

In addition to the power measurement tools described above, recent versions
of the Cray Linux Environment have enabled a degree of user-level power-
management. The aprun application launcher provides a --p-state option
to control, at run-time, the CPU frequency to be used on the compute nodes.

3

On Edison, the frequency can be adjusted between 1.6 and 2.4 GHz in 0.1 GHz
increments. Our experiments use the --p-state feature to explore the e↵ect of
CPU frequency on power and energy use.

3 Microbenchmarks

We use three simple single-node micro-benchmarks to orient our expectations
and analysis of application energy use. Each benchmark represents a limiting
case of a computational and memory access patterns.

3.1 STREAM

The STREAM benchmark is commonly used to measure the bandwidth that
can be sustained by a node’s memory subsystem [4]. We have included it to
understand the energy characteristics of memory-bandwidth limited kernels. For
our power measurements, we use an OpenMP implementation of the STREAM
triad kernel with unit stride and an array size of 4.6 GB, running on all 24 cores.
In order to amortize the relatively high cost of reading the energy counters, we
perform 300 passes through the array so that the total walltime is on the order
of 30 seconds.

Figure 1 shows the how the STREAM triad bandwidth and power consump-
tion vary with CPU frequency. Both curves are (evidently) piecewise linear
with a cusp at 1.6 GHz. The STREAM bandwidth increases quickly with CPU
frequency up to 1.6 GHz, but grows very slowly at higher frequencies. At lower
frequencies, the bandwidth is throttled by the memory controller, which oper-
ates at the CPU frequency. Above the cusp, the memory controller is capable
of higher relay rates, but is limited by the speed of the DRAM bus, which, as
was mentioned in Section 2 is set to 1600 MHz (1.6 GHz) on Edison.

An alternative explanation could be that the cores’ aggregate load/store
issue rate increases with the CPU frequency until all available bandwidth from
the DRAM bus is used, but this is not consistent with our observation that
the cusp does not move to higher frequencies as cores are idled (not shown).1

The flattening of STREAM performance is reflected more subtly in the power
use shown in Fig. 1b. There is a slight decrease in slope above 1.6 GHz, as
the dynamic power used by the cores does not increase any further after the
controller runs fast enough to saturate the memory bus. Based on this initial
observation, we use piecewise fits to the performance and power curves for all
kernel and application benchmarks.

3.2 DGEMM

The DGEMM benchmark performs dense matrix-matrix multiplication of large
(8000 x 8000) arrays and is representative of routines that exhibit high compu-

1
A cusp due to saturation of the memory bus does appear when fewer than eight threads

are used.

4

(a) (b)

Figure 1: Frequency sensitivity of the STREAM triad bandwidth(a) and energy
to solution (b). Measured data are marked with points. Lines are fits to the
form described in Section 4.

(a) (b)

Figure 2: Frequency sensitivity of DGEMM performance (a) and energy to
solution (b). Lines are fits of the measured data.

tational intensity, exploit vector operations and have extensive cache re-use. We
use the threaded DGEMM routine provided by Intel’s MKL library, running on
all 24 cores of a node.2 DGEMM performance and power use are shown in Fig-
ure 2; both scale linearly with frequency. The absence of a cusp at 1.6 GHz is in
accord with our expectation that DGEMM is insensitive to memory bandwidth
and has performance that is proportional to clock speed.

3.3 RandN

We have written a multi-threaded pointer chasing benchmark, RandN, to rep-
resent algorithms in which memory latency is a performance limiting factor.
During the preliminary phase of the benchmark, an array of Ndata elements
is is initialized to a random non-cyclic permutation. Each thread then follows
Nstream sequences of addresses through the array. (Rand1 follows one stream,
Rand2 follows two streams, etc.) The core loop of Rand2 is shown in Algo-
rithm 1. Although only one array of addresses is shared among all threads, the

2
Results obtained from Cray’s libsci DGEMM were qualitatively similar to those obtained

using MKL.

5

(a) Performance vs. Frequency (b) Power vs. Frequency

Figure 3: Frequency sensitivity of the RandN performance(a) and energy to
solution(b). RandN bandwidth is calculated assuming one 64-byte cache line is
transferred for each address.

streams are e↵ectively independent from each other and are unlikely to share
cache lines if Nstream⌧ Ndata.

//Rand2

Nstream = 2;

Nthread = omp_get_num_threads();

jstride = Ndata / Nstream / Nthread;

#pragma omp parallel

#pragma omp private(ithread,j0,j1,i)

{

ithread = omp_get_thread_num();

j0=(0*Nthread+ithread)*jstride;

j1=(1*Nthread+ithread)*jstride;

#pragma omp for

for(i=0; i<imax; i++){

j0=a[j0];

j1=a[j1];

}

Algorithm 1: Source code for RandN benchmark with Nstream=2 (Rand2).
A third stream can be added by inserting j2=a[j2]; into the for loop.

The performance and power plots in Figure 3 have the same piecewise linear
shapes observed for STREAM, though the change in slope at the cusp is sig-
nificantly less acute. It is hardly perceptible for Rand1, but becomes gradually
more pronounced as the number of simultaneous address streams increases and
creates more contention at the memory controller.

6

Figure 4: Microbenchmark power comparison. Static and dynamic power are
application dependent. The horizontal lines show the total power used by an
idle node.

3.4 Microbenchmark comparison

Figure 4 compares the power used by each microbenchmark at the lowest and
highest frequencies tested. Linear fits to the power data from Figures 1-3 were
used to separate static power (intercept) from dynamic power (slope). DGEMM
was the most power-hungry benchmark– it excercises the FPUs, caches and
memory bandwidth resources. At the higher frequency, STREAM’s performance
is limited by memory bandwidth, so the FPUs are not fully utilized and the
dynamic power is somewhat lower than that of DGEMM. The static power
used by STREAM is higher than the other benchmarks due to its heavy use
of DRAM, which operates at a di↵erent frequency. The latencies and data
dependencies of the RandN benchmark prevent full utilization of processor or
the memory, resultign in low static and dynamic power. In all cases, static
power is a large fraction (28-60%) of the power used.

4 Energy Model

The microbenchmark data from the previous section shows that the relation-
ships between power and performance and CPU frequency can be closely fit
by first order models except at architectural balance points where the perfor-
mance bottleneck switches from the processor to another device (e.g. DRAM
or network interface) that operates at an independent frequency.

The intercept of the linear power model P = p0 + p1f can be interpreted
as the static power caused by leakage current (p0) while the slope (p1) is pro-
portional to the sum of the dynamic power due to gates switching states and
the short circuit power caused by transient loop closures when gates are in the
process of switching. Our experiments cannot distinguish dynamic and short
circuit power and we refer to both collectively as dynamic power.

The walltime for each benchmark can be approximated T = w0+w1/f . This
model partitions the time into a frequency independent term, w0, due to o↵-chip
operations that cannot be temporally overlapped with other work done on the
processor and a frequency dependent term w1/f that corresponds to operations

7

Figure 5: Microbenchmark energy comparison. For each benchmark, the energy-
to-solution is normalized with respect to its energy use at 2.4 GHz. Values less
than than 100% represent energy savings. Lines are fitted to the measured data.

that take place on the processor (at a rate proportional to the CPU frequency).
The units and values of the p0, p1, w0 and w1 parameters depend on the

details of each benchmark. It would be interesting to relate these parameters to
specific events as done by Kestor [5], but this exceeds the needs of our analysis.

For a uniform workload at a constant CPU frequency, the energy can be
estimated using

E = P ⇥ T = (p0,i + p1,if)(w1,i/f + w0,i), (1)

where the i subscripts correspond to di↵erent regions of the piecewise models.
Figure 5 shows that this energy model agrees well with the measured data.

(We obtained the values for the p0, p1, w0 and w1 parameters by a linear fit
to the experimentally measured data.) The qualitative di↵erences between the
energy/frequency curves in Figure 5 are readily explained by the limiting cases
of Equation 1.

The minimum for STREAM at 1.6 GHz coincides with movement of the
performance bottleneck from the memory controller to the memory bus. This
minimum appears due to the piecewise nature of the energy model; not an
analytical minimum. Performance of the DGEMM benchmark is expected to
be determined by floating-point performance, so the constant time parameter
(w0, i) is nearly zero, leading to

EDGEMM = (p0,i + p1,if)p1,if = p0,iw1,i/f + p1,iw1,i (2)

which, like the measured data, decreases monotonically with frequency. DRAM
latency is a critical element of RandN performance, so the w0 parameter is
nonzero and an energy minimum appears at f =

p
p0w1/p1w0. As the number

address streams per thread increases from 1 to 4, the out-of-order processor is
able to overlap the latency of the load requests, so the w0 parameter decreases
relative to w1 and the minimum shifts to higher frequencies. It is also interesting
to consider the hypothetical case where static power is eliminated (p0,i = 0),
giving

E
nostatic

= p1,if(w1,i/f + w0,i) = p1,i(w1,i + w0,i), (3)

8

(a) (b)

Figure 6: Performance/Energy tradeo↵s for MILC. (a) Performance vs. CPU
Freqency. (b) Energy to solution vs. CPU Frequency. Lines are fits of the energy
and walltime models in Equation 1 to the measured data.

which minimizes total energy when f=0. Finally, if both the static power and
the constant time parameter are zero, then the total energy is independent of
CPU frequency.

5 Application Energy Measurements

5.1 MILC

MILC implements SU3 lattice gauge theory.[6, ?] Its primary kernel performs a
stencil operation on a 4D grid. The benchmark problem run 24 processes on a
single node and allocates 8x8x8x8 sites per MPI process.

Earlier performance studies have shown that MILC’s performance is sensi-
tive to memory bandwidth,[7, 8] so we expect MILCs energy use to resemble
that of STREAM. Indeed, the total energy use is minimized at 1.8 GHz, close
to the stream minimum at 1.6 GHz. Energy savings of 2.7% are possible if the
performance reduction of 13% is tolerable. Today, this value proposition prob-
ably leans towards saving the HPC users time, in the future however this may
change.

5.2 GTC

The gyrokinetic toroidal code (GTC) is used to simulate microturbulence in
Tokomak fusion reactors.[?] GTC has been the subject of much previous bench-
marking and optimization research and detailed descriptions of the algorithm
are available elsewhere.[9, 10, 11] In short, a gyroaveraged particle-in-cell algo-
rithm is used to propagate particles through a magnetic confining potential. The
benchmark problem is based on the ‘small’ problem from the Trinity-NERSC8
benchmark suite, but has been modified to run on a single Edison node by de-
creasing mzetamax to 24 and increasing micell to 266 so that the total number
of particles is not changed.

9

(a) (b)

Figure 7: Performance/Energy tradeo↵s for GTC. (a) Performance vs. CPU
Frequency. (b) Energy to solution vs. CPU Freqency. Lines are fits of the
energy and walltime models in Equation 1 to the measured data.

For the benchmark problem used here, 92% of the run time is spent in the
push and charge steps of the PIC algorithm. These two steps are responsible
for depositing charge from the particles to the cells and interpolating fields from
the cells back to the particles. Both steps involve nonuniform memory access
patterns into the array of cells as well as indirect addressing. Thus is is not
surprising that the energy and time use of the GTC code resemble the Rand4
benchmark. Figure 7 shows that the energy-minimizing frequency for GTC is
higher than 2.4 GHz. Also, note that performance is almost a linear function
of frequency, at 1.2 GHz the performance is very close to 50%, which, again, is
very similar to the behavior of the RAND4 benchmark described in Section 3.

5.3 Mini-DFT

Mini-DFT performs plane wave density functional theory calculations to simu-
late the electronic structure of materials.It is a mini-application extracted from
the broadly used Quantum Expresso package.[12] The benchmark problem sim-
ulates a 2x2x2 supercell of titanium dioxide using the PBE functional and
a 100 Ry plane-wave cuto↵. MiniDFT’s diagonalization function requires a
square number of processes; other processes wait at a barrier for the duration
of this function. For the purpose of load balancing, we run with 144 processes
(the smallest square integer that can be evenly divided among Edison’s 24-core
nodes.) All runs used four-way task-group parallelism.3

To solve the Kohn-Sham equations, MiniDFT iterates between two compu-
tational phases. In PW-DFT, wave functions are stored on a uniform rhombo-
hedral grid and the FFT phase transforms wave functions between real space
(where the potential is readily evaluated) and reciprocal space (where the ki-
netic energy is evaluated). This phase is dominated all-to-all communication
pattern associated with the transpose steps typical of parallel 3D FFTs. The
second phase is composed of various linear algebra functions that construct and
diagonalize the Fock matrix. We have profiled Mini-DFT at 2.4 GHz using

3
This corresponds to the Mini-DFT run-time options -ntg 4 and-ndiag 144.

10

(a) (b)

Figure 8: Performance/Energy tradeo↵s for Mini-DFT. (a) Performance vs.
CPU Frequency. (b) Energy to solution vs. CPU Freqency. Lines are fits of the
energy and walltime models in Equation 1 to the measured data.

HPC-Toolkit[13] and determined that 43% of the runtime is spent in the FFT
phase and 40% is spent in ZGEMM calls from the linear algebra phase.

The total energy used by the MiniDFT benchmark is shown in Figure 8.
The benchmark calculation is most energy e�cient when run between 1.6 and
1.8 GHz. Up to 4.3% energy savings are possible in exchange for a 13% increase
in wall time.

To interpret the MiniDFT energy curve vv. the microbenchmarks, MiniDFT
energy usage was measured separately for the 3D-FFT routines and the remain-
der of the code. These results are shown in Figure 9. The energy-minimum for
the 3D-FFTs moves to 1.6 GHz, (Figure 9b) slightly to the left of where it
was for the full application. This coincides with the energy minimum of the
STREAM benchmark, which and reflects the bandwidth sensitivity of trans-
pose operations. The performance plot in Figure 9a curves more softly than
STREAM’s, likely due to additional network bandwidth constraints.

The remainder of the code, contains 70% ZGEMM and numerous other
small routines. In this case the characteristics do not completely match that of
ZGEMM. Distinctly di↵erent performance regimes are evident above and below
1.6 GHz. A number of streaming data calculations and large MPI reductions
that are bandwidth sensitive and may be limited by the memory controller
below this frequency. Above this threshold, performance continues to increase
significantly and the energy shifts to 2.2 GHz, which is loosely consistent with
the heavy use of ZGEMM libraries. A frequency dependent profiling study is
needed to confirm this interpretation.

6 Related Work

The need for energy e�ciency in both HPC and mobile computing has motivated
extensive prior research focused on measuring, modeling and minimizing energy
use in computing. A number of measurement tools (including PowerPack[14],
Power Insight[15] and PowerMon2[16]) have been developed to physically in-
strument compute nodes and measure the power used by individual system

11

(a) (b)

(c) (d)

Figure 9: Energy/Performance tradeo↵s for CPU Frequency scaling within Mini-
DFT regions. (a) FFT Performance, (b) FFT Energy to solution, (c) Non-FFT
Performance. (d) Non-FFT Energy to solution, Lines are fits to the measured
data.

components and aggregate and analyze these results on a central server. Other
power measurement e↵orts have foregone additional hardware and emphasized
gathering node-level power measurements in a way that can be scaled to pro-
duction supercomputers[17].

Using these types of measurement tools, various researchers have explored
the energy/performance tradeo↵s that can be achieved by dynamic frequency
and voltage scaling (DVFS)[18, 19, 14], dynamic concurrency throttling (DCT)[20],
or interconnect bandwidth scaling[18]. For some applications, energy use can
be substantially reduced with marginal impact on performance[19]. The rel-
ative value of energy savings and performance is subjective and metrics such
as the energy-delay squared product help to formalize the evaluation of these
tradeo↵s[21, 22, 19].

Kestor et al. have used a carefully designed suite of benchmarks to quantify
energy costs for data movement through di↵erent levels of the memory hierarchy
and constructed a counter-based energy model.[5] This model is more predictive
than our curve fitting approach and was validated using several HPC applica-
tions, but this approach does not provide a simple way of understanding the
sensitivity of the model to parameters such as CPU frequency.

The roofline model of energy proposed by Vuduc[23] examines energy use as
a function of and algorithm’s operational intensity. This model is geared toward
identifying balance points that would steer architecture design

12

Our work is quite similar to earlier DVFS studies, but adds an empirical
energy model to reason about which applications are candidates for energy sav-
ings. A similar style of empirical fitting was used by De Vogeleer [24], who used
their model to propose an energy/frequency convexity rule. Their study tar-
geted mobile computing patterns, examined a di↵erent range of computational
patterns, and used a di↵erent performance model.

7 Conclusion

We have measured the energy/performance trade-o↵s with respect to frequency
scaling for three HPC applications on a Cray XC30. Our measurements for
these codes have minima at 1.8 GHz (MILC), 3.6 GHz (GTC) and 1.6-1.8 GHz
(Mini-DFT). By comparing the energy usage profiles to those for three micro-
benchmarks and applying our knowledge of the applications we have been able to
qualitatively explain the energy usage characteristics of the applications. Also,
our results show that the applications exhibit much more complicated behavior
than that exhibited by the micro-benchmarks, as might be expected.

Frequency scaling, as used in this paper, is not a cost e↵ective approach to
energy conservation on current systems. The largest e�ciency gain was observed
for Mini-DFT, which reduced it’s total energy use by 4% relative to the nominal
frequency of 2.4 GHz. Using reasonable estimates for energy prices ($1/MWy)
and system lifetime (5 years), peak system power (50 kW/cabinet) and capi-
tal costs ($1M/cabinet), the maximum savings due to frequency reduction are
$10k/cabinet. Purchasing a larger system to compensate for the 13% perfor-
mance penalty would substantially more expensive (roughly $130k/cabinet).

Several indicators point to an increased value for frequency scaling on future
systems. Static power is likely to decrease as manufacturers develop subthresh-
old technologies to reduce leakage current and enable fine-grained frequency
domains to minimize the power drawn by idle CPU components. A renewed
emphasis on strong scaling will decrease the amount of work per core (w�1

in Equation 1). On-node concurrency is growing faster than improvements in
memory (or network) latency and bandwidth, which increases the frequency-
independent workload (w0). Deepening memory hierarchies will increase the
number of balance points responsible for local minima on the energy/frequency
profile.

In future work we plan to examine the energy usage of the network and disk
I/O components of the machine as well as perform more detailed experiments
to gain a deeper understanding of the relationship between instruction mix and
energy usage.

Acknowledgment

This research used resources of the National Energy Research Scientific Com-
puting Center, a DOE O�ce of Science User Facility supported by the O�ce

13

of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

References

[1] J. Dongarra and P. Luszczek, “Top500,” in Encyclopedia of Parallel Com-
puting, 2011, pp. 2055–2057.

[2] D. Azevedo, D. A. French, and E. N. Power, “Pue: A comprehensive ex-
amination of the metric,” 2012.

[3] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek,
D. Terpstra, and S. Moore, “Measuring energy and power with papi,” in
ICPP Workshops, 2012, pp. 262–268.

[4] J. D. McCalpin, “Memory bandwidth and machine balance in current high
performance computers,” IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, pp. 19–25, Dec. 1995.

[5] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the
energy cost of data movement in scientific applications,” in IISWC, 2013,
pp. 56–65.

[6] C. Bernard, M. C. Ogilvie, T. A. DeGrand, C. E. DeTar, S. A. Gottlieb,
A. Krasnitz, R. Sugar, and D. Toussaint, “Studying quarks and gluons
on mimd parallel computers,” International Journal of High Performance
Computing Applications, vol. 5, no. 4, pp. 61–70, 1991.

[7] G. Bauer, S. Gottlieb, and T. Hoefler, “Performance Modeling and Com-
parative Analysis of the MILC Lattice QCD Application su3 rmd,” in Pro-
ceedings of the 2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (ccgrid 2012). IEEE Computer Society, May
2012, pp. 652–659.

[8] J. Carter, Y. He, J. Shalf, H. Shan, E. Strohmaier, and H. Wasserman,
“The performance e↵ect of multi-core on scientific applications,” Lawrence
Berkeley National Laboratory, 2007.

[9] K. Madduri, K. Z. Ibrahim, S. Williams, E.-J. Im, S. Ethier, J. Shalf, and
L. Oliker, “Gyrokinetic toroidal simulations on leading multi-and manycore
hpc systems,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 2011,
p. 23.

[10] S. Ethier, W. M. Tang, R. Walkup, and L. Oliker, “Large-scale gyroki-
netic particle simulation of microturbulence in magnetically confined fusion
plasmas,” IBM Journal of Research and Development, vol. 52, no. 1.2, pp.
105–115, 2008.

14

[11] L. Oliker, A. Canning, J. Carter, J. Shalf, and S. Ethier, “Scientific com-
putations on modern parallel vector systems,” in Proceedings of the 2004
ACM/IEEE conference on Supercomputing. IEEE Computer Society, 2004,
p. 10.

[12] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,
D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso,
S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann,
C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,
C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov,
P. Umari, and R. M. Wentzcovitch, “Quantum espresso: a modular
and open-source software project for quantum simulations of materials,”
Journal of Physics: Condensed Matter, vol. 21, no. 39, p. 395502 (19pp),
2009. [Online]. Available: http://www.quantum-espresso.org

[13] L. Adhianto, S. Banerjee, M. W. Fagan, M. Krentel, G. Marin, J. M. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: tools for performance analysis
of optimized parallel programs,” Concurrency and Computation: Practice
and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[14] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron, “Pow-
erpack: Energy profiling and analysis of high-performance systems and ap-
plications,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 5, pp. 658–671,
2010.

[15] J. H. L. III, P. Pokorny, and D. Debonis, “Powerinsight - a commodity
power measurement capability,” in IGCC, 2013, pp. 1–6.

[16] D. Bedard, R. Fowler, M. Linn, and A. Porterfield, “Powermon 2: Fine-
grained, integrated power measurement,” Renaissance Computing Insti-
tute, Tech. Rep. TR-09-04, 2009.

[17] J. H. L. III, K. T. Pedretti, S. M. Kelly, J. P. Vandyke, K. B. Ferreira,
C. T. Vaughan, and M. Swan, “Topics on measuring real power usage on
high performance computing platforms,” in CLUSTER, 2009, pp. 1–8.

[18] J. H. Laros III, K. T. Pedretti, S. M. Kelly, W. Shu, and C. T. Vaughan,
“Energy based performance tuning for large scale high performance com-
puting systems,” in Proceedings of the 2012 Symposium on High Perfor-
mance Computing. Society for Computer Simulation International, 2012,
p. 6.

[19] R. Ge, X. Feng, and K. W. Cameron, “Improvement of power-performance
e�ciency for high-end computing,” in IPDPS, 2005.

[20] D. Li, B. R. de Supinski, M. Schulz, K. W. Cameron, and D. S. Nikolopou-
los, “Hybrid mpi/openmp power-aware computing,” in IPDPS, 2010, pp.
1–12.

15

[21] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital design,”
in Low Power Electronics, 1994. Digest of Technical Papers., IEEE Sym-
posium. IEEE, 1994, pp. 8–11.

[22] D. Brooks, P. Bose, S. Schuster, H. M. Jacobson, P. Kudva, A. Buyuk-
tosunoglu, J.-D. Wellman, V. V. Zyuban, M. Gupta, and P. W. Cook,
“Power-aware microarchitecture: Design and modeling challenges for next-
generation microprocessors,” IEEE Micro, vol. 20, no. 6, pp. 26–44, 2000.

[23] J. Choi, D. Bedard, R. J. Fowler, and R. W. Vuduc, “A roofline model of
energy,” in IPDPS, 2013, pp. 661–672.

[24] K. D. Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “The en-
ergy/frequency convexity rule: Modeling and experimental validation on
mobile devices,” CoRR, vol. abs/1401.4655, 2014.

16

