NERSCPowering Scientific Discovery Since 1974

Publications

2016

Daya Bay Collaboration, F.P. An et al., "Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay", Chinese Physics C, 2017, 41(1): 13002-013002, December 26, 2016,

A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0:946±0:020 (0:992±0:021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6 MeV was found in the measured spectrum, with a local signi cance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.

This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. A relative comparison of the rate and energy spectrum of reactor antineutrinos in the three experimental halls yields no evidence of sterile neutrino mixing in the 2×104|Δm241|0.3eV2 mass range. The resulting limits on sin22θ14 are improved by approx imately a factor of 2 over previous results and constitute the most stringent constraints to date in the |Δm241|0.2eV2 region.

Daya Bay and MINOS Collaborations, P. Adamson et al., "Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments", Physical Review Letters, October 7, 2016,

Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin22θμe are set over 6 orders of magnitude in the sterile mass-squared splitting Δm241. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm241<0.8eV2 at 95%CLs.

Daya Bay Collaboration, F.P. An et al., "Study of the wave packet treatment of neutrino oscillation at Daya Bay,", The European Physical Journal C, August 11, 2016,

The disappearance of reactor ν¯e observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion σrel. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of ν¯e acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. The modified survival probability formula was used to fit Daya Bay data, providing the first experimental limits: 2.381017<σrel<0.23. Treating the dimensions of the reactor cores and detectors as constraints, the limits are improved: 1014σrel<0.23, and an upper limit of σrel<0.20 is obtained. All limits correspond to a 95\% C.L. Furthermore, the effect due to the wave packet nature of neutrino oscillation is found to be insignificant for reactor antineutrinos detected by the Daya Bay experiment thus ensuring an unbiased measurement of the oscillation parameters sin22θ13 and Δm232 within the plane wave model.

F. P. An, et al. (Daya Bay Collaboration), "New measurement of θ13 via neutron capture on hydrogen at Daya Bay", Phys. Rev. D 93, 072011, April 21, 2016, doi: 10.1103/PhysRevD.93.072011

Daya Bay Collaboration: F.P. An, A.B. Balantekin, H.R. Band, W. Beriguete, et. al,, "Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay", Journal, February 11, 2016, doi: 10.1016/j.nuclphysbps.2015.09.298

Daya Bay Collaboration, "The Detector System of The Daya Bay Reactor Neutrino Experiment", edited by Daya Bay Collaboration (F P. An et al.), January 8, 2016, doi: 10.1016/j.nima.2015.11.144

2015

F. P. An et al. (Daya Bay Collaboration), "New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay", Phys. Rev. Lett. 115, 111802, September 11, 2015, Vol. 115, doi: http://dx.doi.org/10.1103/PhysRevLett.115.111802

We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9 x 10^5 GW,ton a day, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission.

Daya Bay Collaboration: F.P. An, A.B. Balantekin, H.R. Band, W. Beriguete, et. al, "The Muon System of the Daya Bay Reactor Antineutrino Experiment", Nuclear Instruments and Methods in Physics, August 20, 2015, Volume 7, doi: http://dx.doi.org/10.1016/j.nima.2014.09.070

The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that effciently detect cosmogenic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described.

2014

Daya Bay Collaboration: F.P. An, A.B. Balantekin, H.R. Band, W. Beriguete, et. al, "Search for a Light Sterile Neutrino at Daya Bay", Phys. Rev. Letter, July 27, 2014,

A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9~GWth nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1579~m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the 10−3 eV2<|Δm241|<0.3 eV2 range. The relative spectral distortion due to electron antineutrino disappearance was found to be consistent with that of the three-flavor oscillation model. The derived limits on sin22θ14 cover the 10−3 eV2≲|Δm241|≲0.1 eV2 region, which was largely unexplored

Daya Bay Collaboration: F.P. An, A.B. Balantekin, H.R. Band, W. Beriguete, et. al, "Independent Measurement of Theta13 via Neutron Capture on Hydrogen at Daya Bay", Phys. Rev. Letter, June 25, 2014,

A new measurement of the θ13 mixing angle has been obtained at the Daya Bay Reactor Neutrino Experiment via the detection of inverse beta decays tagged by neutron capture on hydrogen. The antineutrino events for hydrogen capture are distinct from those for gadolinium capture with largely different systematic uncertainties, allowing a determination independent of the gadolinium-capture result and an improvement on the precision of θ13 measurement. With a 217-day antineutrino data set obtained with six antineutrino detectors and from six 2.9 GWth reactors, the rate deficit observed at the far hall is interpreted as sin22θ13=0.083±0.018 in the three-flavor oscillation model. When combined with the gadolinium-capture result from Daya Bay, we obtain sin22θ13=0.089±0.008 as the final result for the six-antineutrino-detector configuration of the Daya Bay experiment.

2013

Daya Bay Collaboration: F.P. An, A.B. Balantekin, H.R. Band, W. Beriguete, et. al, "Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay", Phys. Rev. Letter, October 24, 2013,


A measurement of the energy dependence of antineutrino disappearance at the Daya Bay Reactor Neutrino Experiment is reported. Electron antineutrinos from six GW reactors were detected with six detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls. Using 217 days of data, 41589 (203809 and 92912) antineutrino candidates were detected in the far hall (near halls). An improved measurement of the oscillation amplitude and the first direct measurement of the mass-squared difference is obtained using the observed rates and energy spectra in a three-neutrino framework. 

This value obtained is consistent with measured by muon neutrino disappearance, supporting the three-flavor oscillation model.

Full Author List:

F.P. An, A.B. Balantekin, H.R. Band, W. Beriguete, M. Bishai, S. Blyth, R.L. Brown, I. Butorov, G.F. Cao, J. Cao, R. Carr, Y.L. Chan, J.F. Chang, Y. Chang, C. Chasman, H.S. Chen, H.Y. Chen, S.J. Chen, S.M. Chen, X.C. Chen, X.H. Chen, Y. Chen, Y.X. Chen, Y.P. Cheng, J.J. Cherwinka, M.C. Chu, J.P. Cummings, J. de Arcos, Z.Y. Deng, Y.Y. Ding, M. Diwan, E. Draeger, X.F. Du, D.A. Dwyer, W.R. Edwards, S.R. Ely, J.Y. Fu, L.Q. Ge, R. Gill, M. Gonchar, G.H. Gong, H. Gong, Y.A. Gornushkin, W.Q. Gu, M.Y. Guan, X.H. Guo, R.W. Hackenburg, R.L. Hahn, G.H. Han, S. Hans,M. He, K.M. Heeger, Y.K. Heng, P. Hinrichs, J. Hor, Y.B. Hsiung, B.Z. Hu, L.J. Hu, L.M. Hu, T. Hu, W. Hu, E.C. Huang, H.X. Huang, H.Z. Huang, X.T. Huang, P. Huber, G. Hussain, Z. Isvan, D.E. Jaffe, P. Jaffke, S. Jetter, X.L. Ji, X.P. Ji, H.J. Jiang, J.B. Jiao, R.A. Johnson, L. Kang, S.H. Kettell, M. Kramer, K.K. Kwan, M.W. Kwok, T. Kwok, W.C. Lai, W.H. Lai, K. Lau, L. Lebanowski, J. Lee, R.T. Lei, R. Leitner,A. Leung, J.K.C. Leung, C.A. Lewis, D.J. Li, F. Li, G.S. Li, Q.J. Li, W.D. Li, X.N. Li, X.Q. Li, Y.F. Li, Z.B. Li, H. Liang, C.J. Lin, G.L. Lin, S.K. Lin, Y.C. Lin, J.J. Ling, J.M. Link, L. Littenberg, B. Littlejohn,D.W. Liu, H. Liu, J.C. Liu, J.L. Liu, S.S. Liu, Y.B. Liu, C. Lu, H.Q. Lu, K.B. Luk, Q.M. Ma, X.B. Ma, X.Y. Ma, Y.Q. Ma, K.T. McDonald, M.C. McFarlane, R.D. McKeown, Y. Meng, I. Mitchell, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, I. Nemchenok, H.Y. Ngai, W.K. Ngai, Z. Ning, J.P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J.C. Peng, L.E. Piilonen, L. Pinsky, C.S.J. Pun, F.Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X.C. Ruan, B.B. Shao, H. Steiner, G.X. Sun, J.L. Sun, Y.H. Tam, H.K. Tanaka, X. Tang, H. Themann, S. Trentalange, O. Tsai, K.V. Tsang, R.H.M. Tsang, C.E. Tull, Y.C. Tung, B. Viren, V. Vorobel, C.H. Wang, L.S. Wang, L.Y. Wang, L.Z. Wang, M. Wang, N.Y. Wang, R.G. Wang, W. Wang, W.W. Wang, Y.F. Wang, Z. Wang, Z. Wang, Z.M. Wang, D.M. Webber, H.Y. Wei, Y.D. Wei, L.J. Wen, K. Whisnant, C.G. White, L. Whitehead, T.S. Wise, H.L.H. Wong, S.C.F. Wong, E. Worcester, Q. Wu, D.M. Xia, J.K. Xia, X. Xia, Z.Z. Xing, J. Xu, J.L. Xu, J.Y. Xu, Y. Xu, T. Xue, J. Yan, C.G. Yang, L. Yang, M.S. Yang, M. Ye, M.F. Yeh, Y.S. Yeh, B.L. Young, G.Y. Yu, J.Y. Yu, Z.Y. Yu, S.L. Zang, L. Zhan, C. Zhang, F.H. Zhang, J.W. Zhang, Q.M. Zhang, S.H. Zhang, Y.C. Zhang, Y.H. Zhang, Y.M. Zhang, Y.X. Zhang, Z.J. Zhang, Z.P. Zhang, Z.Y. Zhang, J. Zhao, Q.W. Zhao, Y.B. Zhao, L. Zheng, W.L. Zhong, L. Zhou, Z.Y. Zhou, H.L. Zhuang, J.H. Zou


2012

Daya Bay Collaboration, F. P. An, Q. An, J. Z. Bai et al., "Improved Measurement of Electron Antineutrino Disappearance at Daya Bay", Phys. Rev. Letter, October 23, 2012, doi: 10/2012; DOI:10.1088/1674-1137/37/1/011001

ABSTRACT: We report an improved measurement of the neutrino mixing angle $\theta_{13}$ from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for $\sin^22\theta_{13}$ with a significance of 7.7 standard deviations. Electron antineutrinos from six reactors of 2.9 GW$_{\rm th}$ were detected in six antineutrino detectors deployed in two near (flux-weighted baselines of 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to the expected number of antineutrinos assuming no oscillations at the far hall is $0.944\pm 0.007({\rm stat.}) \pm 0.003({\rm syst.})$. An analysis of the relative rates in six detectors finds $\sin^22\theta_{13}=0.089\pm 0.010({\rm stat.})\pm0.005({\rm syst.})$ in a three-neutrino framework.

Full Author List:

F. P. An, Q. An, J. Z. Bai, A. B. Balantekin, H. R. Band, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, G. F. Cao, J. Cao, R. Carr, W. T. Chan, J. F. Chang, Y. Chang, C. Chasman, H. S. Chen, H. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. Chen, Y. X. Chen, J. J. Cherwinka, M. C. Chu, J. P. Cummings, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, E. Draeger, X. F. Du, D. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, R. L. Gill, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, R. L. Hahn, S. Hans, H. F. Hao, M. He, Q. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, H. X. Huang, H. Z. Huang, X. T. Huang, P. Huber, V. Issakov, Z. Isvan, D. E. Jaffe, S. Jetter, X. L. Ji, X. P. Ji, H. J. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, F. Li, G. S. Li, Q. J. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. C. Liu, J. L. Liu, Y. B. Liu, C. Lu, H. Q. Lu, A. Luk, K. B. Luk, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, D. Mohapatra, Y. Nakajima, J. Napolitano, D. Naumov, I. Nemchenok, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, K. Shih, H. Steiner, G. X. Sun, J. L. Sun, N. Tagg, Y. H. Tam, H. K. Tanaka, X. Tang, H. Themann, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, B. Viren, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Y. Wei, Y. D. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, Y. Williamson, T. Wise, H. L. H. Wong, E. T. Worcester, F. F. Wu, Q. Wu, J. B. Xi, D. M. Xia, Z. Z. Xing, J. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, L. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, Z. Y. Yu, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

F. P. An, J. Z. Bai, A. B. Balantekin, et al., "Observation of electron-antineutrino disappearance at Daya Bay", Phys. Rev. Letter, March 8, 2012,

The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angle θ13 with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GWth reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With 55 days of data, 10416 (80376) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is  R=0.940 ±0.011( stat) ± 0.004( syst). A rate-only analysis finds sin2 2 θ13 - 0.092 ± 0.016( stat}) ± 0.005(syst) in a three-neutrino framework.

Full Author list: F. P. An, J. Z. Bai, A. B. Balantekin, H. R. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, G. F. Cao, J. Cao, R. Carr, W. T. Chan, J. F. Chang, Y. Chang, C. Chasman, H. S. Chen, H. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. Chen, Y. X. Chen, J. J. Cherwinka, M. C. Chu, J. P. Cummings, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, L. Dong, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, V. Ghazikhanian, R. L. Gill, J. Goett, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, L. S. Greenler, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, R. L. Hahn, S. Hans, M. He, Q. He, W. S. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, T. H. Ho, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, T. Hu, H. X. Huang, H. Z. Huang, P. W. Huang, X. Huang, X. T. Huang, P. Huber, Z. Isvan, D. E. Jaffe, S. Jetter, X. L. Ji, X. P. Ji, H. J. Jiang, W. Q. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, K. Lau, L. Lebanowski, J. Lee, M. K. P. Lee, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, B. Li, F. Li, G. S. Li, J. Li, Q. J. Li, S. F. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Z. B. Li, H. Liang, J. Liang, C. J. Lin, G. L. Lin, S. K. Lin, S. X. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, B. J. Liu, C. Liu, D. W. Liu, H. Liu, J. C. Liu, J. L. Liu, S. Liu, X. Liu, Y. B. Liu, C. Lu, H. Q. Lu, A. Luk, K. B. Luk, T. Luo, X. L. Luo, L. H. Ma, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, B. Mayes, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, D. Mohapatra, J. E. Morgan, Y. Nakajima, J. Napolitano, D. Naumov, I. Nemchenok, C. Newsom, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, A. Pagac, S. Patton, C. Pearson, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, R. Rosero, B. Roskovec, X. C. Ruan, B. Seilhan, B. B. Shao, K. Shih, H. Steiner, P. Stoler, G. X. Sun, J. L. Sun, Y. H. Tam, H. K. Tanaka, X. Tang, H. Themann, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. Tull, B. Viren, S. Virostek, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, T. Wang, W. Wang, X. Wang, X. Wang, Y. F. Wang, Z.Wang, Z.Wang, Z. M.Wang, D. M.Webber, Y. D.Wei, L. J.Wen, D. L.Wenman, K. Whisnant, C. G. White, L. Whitehead, C. A. Whitten Jr., J. Wilhelmi, T. Wise, H. C. Wong, H. L. H. Wong, J. Wong, E. T. Worcester, F. F. Wu, Q. Wu, D. M. Xia, S. T. Xiang, Q. Xiao, Z. Z. Xing, G. Xu, J. Xu, J. Xu, J. L. Xu, W. Xu, Y. Xu, T. Xue, C. G. Yang, L. Yang, M. Ye, M. Yeh, Y. S. Yeh, K. Yip, B. L. Young, Z. Y. Yu, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, K. Zhang, Q. X. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

Scott Campbell, Jason Lee, "Prototyping a 100G Monitoring System", 20th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2012), February 12, 2012,

The finalization of the 100 Gbps Ethernet Specification has been a tremendous increase in these rates arriving into data centers creating the need to perform security monitoring at 100 Gbps no longer simply an academic exercise. We show that by leveraging the ‘heavy tail flow effect’ on the IDS infrastructure, it is possible to perform security analysis at such speeds within the HPC environment. Additionally, we examine the nature of current traffic characteristics, how to scale an IDS infrastructure to 100Gbps.

2011

Scott Campbell, Jason Lee, "Intrusion Detection at 100G", The International Conference for High Performance Computing, Networking, Storage, and Analysis, November 14, 2011,

Driven by the growing data transfer needs of the scientific community and the standardization of the 100 Gbps Ethernet Specification, 100 Gbps is now becoming a reality for many HPC sites. This tenfold increase in bandwidth creates a number of significant technical challenges. We show that by using the heavy tail flow effect as a filter, it should be possible to perform active IDS analysis at this traffic rate using a cluster of commodity systems driven by a dedicated load balancing mechanism. Additionally, we examine the nature of current network traffic characteristics applying them to 100Gpbs speeds

Scott Campbell, Steve Chan and Jason Lee, "Detection of Fast Flux Service Networks", Australasian Information Security Conference 2011, January 17, 2011,

Fast Flux Service Networks (FFSN) utilize high availability server techniques for malware distribution. FFSNs are similar to commercial content distribution networks (CDN), such as Akamai, in terms of size, scope, and business model, serving as an outsourced content delivery service for clients.  Using an analysis of DNS traffic, we derive a sequential hypothesis testing algorithm based entirely on traffic characteristics and dynamic white listing to provide real time detection of FFDNs in live traffic.  We improve on existing work, providing faster and more accurate detection of FFSNs. We also identify a category of hosts not addressed in previous detectors - Open Content Distribution Networks (OCDN) that share many of the characteristics of FFSNs

2010

Sim A., Gunter D., Natarajan V., Shoshani A., Williams D., Long J., Hick J., Lee J., Dart E., "Efficient Bulk Data Replication for the Earth System Grid", Data Driven E-science: Use Cases and Successful Applications of Distributed Computing Infrastructures (Isgc 2010), Springer-Verlag New York Inc, 2010, 435,

Kettimuthu Raj, Sim Alex, Gunter Dan, Allcock Bill, Bremer Peer T., Bresnahan John, Cherry Andrew, Childers Lisa, Dart Eli, Foster Ian, Harms Kevin, Hick Jason, Lee Jason, Link Michael, Long Jeff, Miller Keith, Natarajan Vijaya, Pascucci Valerio, Raffenetti Ken, Ressman David, Williams Dean, Wilson Loren, Winkler Linda, "Lessons Learned from Moving Earth System Grid Data Sets over a 20 Gbps Wide-Area Network", Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing HPDC 10, New York NY USA, 2010, 316--319,

A. Sim, D. Gunter, V. Natarajan, A. Shoshani, D. Williams, J. Long, J. Hick, J. Lee, E. Dart, "Efficient Bulk Data Replication for the Earth System Grid", International Symposium on Grid Computing, 2010,

2007

Chin Guok, Jason R Lee, Karlo Berket, "Improving the Bulk Data Transfer Experience", Management of IP Networks and Services Special Issue, January 1, 2007,

Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network that is logically separate from the production IP core network. One of the requirements of the science data network is the ability to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path.  In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation.  In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern Paxson, Brian Tierney,, "The NIDS Cluster: Scalable, Stateful Network Intrusion Detection on Commodity Hardware", Proceedings of the Symposium on Recent Advances in Intrusion Detection, Queensland, Australia,, January 1, 2007,

2006

E. Wes Bethel, Scott Campbell, Eli Dart, Jason Lee, Steven A. Smith, Kurt Stockinger, Brian Tierney, Kesheng Wu, "Interactive Analysis of Large Network Data Collections Using Query-Driven Visualization", DOE Report, September 26, 2006, LBNL 59166,

Realizing operational analytics solutions where large and complex data must be analyzed in a time-critical fashion entails integrating many different types of technology. Considering the extreme scale of contemporary datasets, one significant challenge is to reduce the duty cycle in the analytics discourse process. This paper focuses on an interdisciplinary combination of scientific data management and visualization/analysistechnologies targeted at reducing the duty cycle in hypothesis testing and knowledge discovery. We present an application of such a combination in the problem domain of network traffic dataanalysis. Our performance experiment results, including both serial and parallel scalability tests, show that the combination can dramatically decrease the analytics duty cycle for this particular application. The combination is effectively applied to the analysis of network traffic data to detect slow and distributed scans, which is a difficult-to-detect form of cyberattack. Our approach is sufficiently general to be applied to a diverse set of data understanding problems as well as used in conjunction with a diverse set of analysis and visualization tools

C. Guok, D. Robertson, M. Thompson, J. Lee, B. Tierney and William Johnston, "Intra and Interdomain Circuit Provisioning Using the OSCARS Reservation System", GridNETS 2006, January 1, 2006, LBNL 60373,

Ruoming Pang, Mark Allman, Vern Paxson, Jason Lee, "The Devil and Packet Trace Anonymization", ACM Computer Communication Review, January 1, 2006, LBNL 57630,

2005

Ruoming Pang, Mark Allman, Mike Bennett, Jason Lee, Vern Paxson, Brian Tierney, "A First Look at Modern Enterprise Traffic", ACM SIGCOMM/USENIX Internet Measurement Conference, October 1, 2005,

Daniel K. Gunter, Keith R. Jackson, David E. Konerding, Jason R. Lee, Brian L. Tierney, "Essential Grid Workflow Monitoring Elements", The 2005 International Conference on Grid Computing and Applications, January 1, 2005, LBNL 57428,

Antony Antony, Johan Blom, Cees de Laat, Jason Lee, "Exploring practical limitations of TCP over TransAtlantic networks", the DataTAG Project, special issue, Future Generation Computer Systems, volume 21 issue 4 (2005), January 1, 2005,

2004

Wim Sjouw, Antony Antony, Johan Blom, Cees de Laat and Jason Lee, "TCP Behaviour On Transatlantic Lambda's", Grid Computing: First European Across Grids Conference, Santiago de Compostela, Spain, February 1, 2004,

Ian Foster, et al., "The Grid2003 Production Grid: Principles and Practice", HPDC 2004, January 1, 2004,

2003

Brian L. Tierney, Tom Dunigan, Jason R. Lee, Dan Gunter, Martin Stoufer, "Improving Distributed Application Performance Using TCP Instrumentation", May 3, 2003, LBNL 52590,

Antony Antony, Johan Blom, Cees de Laat, Jason Lee, Wim Sjouw,, "Microscopic Examination of TCP Flows Over Transatlantic Links", iGrid2002 special issue, Future Generation Computer Systems, volume 19 issue 6, January 1, 2003,

2002

J. Lee, D. Gunter, M. Stoufer, B. Tierney, "Monitoring Data Archives for Grid Environments", Proceeding of IEEE Supercomputing 2002 Conference, November 1, 2002, LBNL 50216,

D. Gunter, B. Tierney, K. Jackson, J. Lee, M. Stoufer, "Dynamic Monitoring of High-Performance Distributed Applications", Proceedings of the 11th IEEE Symposium on High Performance Distributed Computing, June 1, 2002, LBNL 49698,

2001

B. Allcock, Foster, I., Nefedova, V., Chervenak, A., Deelman, E., Kesselman, C., Sim, A., Shoshani, A., Lee, J., Drach, B., Williams, D, "High-Performance Remote Access to Climate Simulation Data: A Challenge Problem for Data Grid Technologies", Proceeding of the IEEE Supercomputing 2001 Conference, November 1, 2001,

J. Lee, D. Gunter, B. Tierney, W. Allock, J. Bester, J.Bresnahan, S. Tecke, "Applied Techniques for High Bandwidth Data Transfers across Wide Area Networks", CHEP01 Beijing China, September 1, 2001, LBNL 46269,

B. Tierney, D. Gunter, J. Lee, M. Stoufer, "Enabling Network-Aware Applications", Proceedings of the 10th IEEE Symposium on High Performance Distributed Computing, August 1, 2001, LBNL 47611,

D. Agarwal, B. Tierney, D. Gunter, J. Lee, and W. Johnston, "Network Aware High-Performance Distributed Applications", Proceedings of the Workshop on New Visions for Large-Scale Networks: Research and Applications, March 1, 2001, LBNL 47518,

2000

W. Bethel, Tierney, B., Lee, J., Gunter, D., Lau, S., "Using High-Speed WANs and Network Data Caches to Enable Remote and Distributed Visualization", Proceeding of the IEEE Supercomputing 2000 Conference, November 1, 2000, LBNL 45365,

Tierney, B., W. Johnston, J. Lee,, "A Cache-based Data Intensive Distributed Computing Architecture for Grid Applications", CERN School of Computing, September 1, 2000,

D. Gunter, B. Tierney, B. Crowley, M. Holding, J. Lee, "NetLogger: A Toolkit for Distributed System Performance Analysis", Proceedings of the IEEE Mascots 2000 Conference, August 1, 2000, LBNL 46269,

1998

W. Johnston, J. Guojun, C. Larsen, J. Lee, G. Hoo, M. Thompson, B. Tierney (LBNL) and J. Terdiman (Kaiser Permanente Division of Research), "Real-Time Generation and Cataloguing of Large Data-Objects in Widely Distributed Environments", International Journal of Digital Libraries, special issue on "Digital Libraries in Medicine,", May 1, 1998,

1996

Johnston, W., B. Tierney, J. Lee, G. Hoo, and M. Thompson, "Distributed Large Data-Object Environments: End-to-End Performance Analysis of High Speed Distributed Storage Systems in Wide Area ATM Networks", Fifth NASA Goddard Space Flight Center Conference on Mass Storage Systems and Technologies, University of Maryland, College Park, MD, September 1, 1996, LBNL 39064,

1995

Tierney, B., W. Johnston, G. Hoo, J. Lee, "Demonstrations of a Remote Distributed Parallel Storage Server (DPSS)", Supercomputing 1995, November 1, 1995, LBNL 38001,

Design and Implementation of a Image Server System, Jason R. Lee, October 1995,

Tierney, B., W. Johnston, G. Hoo, J. Lee, "Performance Analysis in High-Speed Wide Area ATM Networks: Top-to-bottom end-to-end Monitoring", MAGIC Symposium, Minneapolis MN, August 1995, August 1, 1995,

Johnston, W. E., B. L. Tierney, H. M. Herzog, G. Hoo, G. Jin, J. R. Lee, "Distributed Parallel Data Storage Systems: A Scalable Approach to High Speed Image Servers", ACM-Multimedia, 1995, LBNL LBL-35408,

1994

Tierney, B., W. Johnston, H. Herzog, G. Hoo, G. Jin, and J. Lee, "The Image Server System: A Scalable, Software Approach to High-Speed Distributed Storage,", ARPA Networking PI Meeting, Santa Fe, NM, October 1, 1994, LBNL 36218,

Tierney, B., W. Johnston, L.T. Chen, H. Herzog, G. Hoo, and J. Lee, "The Image Server System: A High-Speed Parallel Distributed Data Server", July 1, 1994, LBNL 36002,

Johnston, W., B. Tierney, H. Herzog, G. Hoo, G.Jin, J. Lee, "Time and MAGIC: Precision Network Timing in the MAGIC Testbed", MAGIC Technical Symposium, Lawrence Kansas, July, 1994, June 1, 1994,

Johnston, W. E., B. L. Tierney, H. M. Herzog, G. Hoo, G. Jin, J. R. Lee, "System Issues in Implementing High Speed Distributed Parallel Storage Systems", Usenix 1994, 1994,

Johnston, W. E., B. L. Tierney, H. M. Herzog, G. Hoo, G. Jin, J. R. Lee, "Using High Speed Networks to Enable Distributed Parallel Image Server Systems", SuperComputing 1994, January 1, 1994,

Tierney, B., W. Johnston, Hanan Herzog, G. Hoo, G. Jin, and J. Lee, "The Image Server System: An Example of a Gigabit Network Testbed Application", Gigabit Jamboree, Washington DC, January 1, 1994, LBNL LBL-36318,