NERSCPowering Scientific Discovery Since 1974

Publications

Journal Article

2013

Daya Bay Collaboration: F.P. An, A.B. Balantekin, H.R. Band, W. Beriguete, et. al, “Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay”, Phys. Rev. Letter, October 24, 2013,


A measurement of the energy dependence of antineutrino disappearance at the Daya Bay Reactor Neutrino Experiment is reported. Electron antineutrinos from six GW reactors were detected with six detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls. Using 217 days of data, 41589 (203809 and 92912) antineutrino candidates were detected in the far hall (near halls). An improved measurement of the oscillation amplitude and the first direct measurement of the mass-squared difference is obtained using the observed rates and energy spectra in a three-neutrino framework. 

This value obtained is consistent with measured by muon neutrino disappearance, supporting the three-flavor oscillation model.

Full Author List:

F.P. An, A.B. Balantekin, H.R. Band, W. Beriguete, M. Bishai, S. Blyth, R.L. Brown, I. Butorov, G.F. Cao, J. Cao, R. Carr, Y.L. Chan, J.F. Chang, Y. Chang, C. Chasman, H.S. Chen, H.Y. Chen, S.J. Chen, S.M. Chen, X.C. Chen, X.H. Chen, Y. Chen, Y.X. Chen, Y.P. Cheng, J.J. Cherwinka, M.C. Chu, J.P. Cummings, J. de Arcos, Z.Y. Deng, Y.Y. Ding, M. Diwan, E. Draeger, X.F. Du, D.A. Dwyer, W.R. Edwards, S.R. Ely, J.Y. Fu, L.Q. Ge, R. Gill, M. Gonchar, G.H. Gong, H. Gong, Y.A. Gornushkin, W.Q. Gu, M.Y. Guan, X.H. Guo, R.W. Hackenburg, R.L. Hahn, G.H. Han, S. Hans,M. He, K.M. Heeger, Y.K. Heng, P. Hinrichs, J. Hor, Y.B. Hsiung, B.Z. Hu, L.J. Hu, L.M. Hu, T. Hu, W. Hu, E.C. Huang, H.X. Huang, H.Z. Huang, X.T. Huang, P. Huber, G. Hussain, Z. Isvan, D.E. Jaffe, P. Jaffke, S. Jetter, X.L. Ji, X.P. Ji, H.J. Jiang, J.B. Jiao, R.A. Johnson, L. Kang, S.H. Kettell, M. Kramer, K.K. Kwan, M.W. Kwok, T. Kwok, W.C. Lai, W.H. Lai, K. Lau, L. Lebanowski, J. Lee, R.T. Lei, R. Leitner,A. Leung, J.K.C. Leung, C.A. Lewis, D.J. Li, F. Li, G.S. Li, Q.J. Li, W.D. Li, X.N. Li, X.Q. Li, Y.F. Li, Z.B. Li, H. Liang, C.J. Lin, G.L. Lin, S.K. Lin, Y.C. Lin, J.J. Ling, J.M. Link, L. Littenberg, B. Littlejohn,D.W. Liu, H. Liu, J.C. Liu, J.L. Liu, S.S. Liu, Y.B. Liu, C. Lu, H.Q. Lu, K.B. Luk, Q.M. Ma, X.B. Ma, X.Y. Ma, Y.Q. Ma, K.T. McDonald, M.C. McFarlane, R.D. McKeown, Y. Meng, I. Mitchell, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, I. Nemchenok, H.Y. Ngai, W.K. Ngai, Z. Ning, J.P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J.C. Peng, L.E. Piilonen, L. Pinsky, C.S.J. Pun, F.Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X.C. Ruan, B.B. Shao, H. Steiner, G.X. Sun, J.L. Sun, Y.H. Tam, H.K. Tanaka, X. Tang, H. Themann, S. Trentalange, O. Tsai, K.V. Tsang, R.H.M. Tsang, C.E. Tull, Y.C. Tung, B. Viren, V. Vorobel, C.H. Wang, L.S. Wang, L.Y. Wang, L.Z. Wang, M. Wang, N.Y. Wang, R.G. Wang, W. Wang, W.W. Wang, Y.F. Wang, Z. Wang, Z. Wang, Z.M. Wang, D.M. Webber, H.Y. Wei, Y.D. Wei, L.J. Wen, K. Whisnant, C.G. White, L. Whitehead, T.S. Wise, H.L.H. Wong, S.C.F. Wong, E. Worcester, Q. Wu, D.M. Xia, J.K. Xia, X. Xia, Z.Z. Xing, J. Xu, J.L. Xu, J.Y. Xu, Y. Xu, T. Xue, J. Yan, C.G. Yang, L. Yang, M.S. Yang, M. Ye, M.F. Yeh, Y.S. Yeh, B.L. Young, G.Y. Yu, J.Y. Yu, Z.Y. Yu, S.L. Zang, L. Zhan, C. Zhang, F.H. Zhang, J.W. Zhang, Q.M. Zhang, S.H. Zhang, Y.C. Zhang, Y.H. Zhang, Y.M. Zhang, Y.X. Zhang, Z.J. Zhang, Z.P. Zhang, Z.Y. Zhang, J. Zhao, Q.W. Zhao, Y.B. Zhao, L. Zheng, W.L. Zhong, L. Zhou, Z.Y. Zhou, H.L. Zhuang, J.H. Zou


2012

Daya Bay Collaboration, F. P. An, Q. An, J. Z. Bai et al., “Improved Measurement of Electron Antineutrino Disappearance at Daya Bay”, October 23, 2012,

ABSTRACT: We report an improved measurement of the neutrino mixing angle $\theta_{13}$ from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for $\sin^22\theta_{13}$ with a significance of 7.7 standard deviations. Electron antineutrinos from six reactors of 2.9 GW$_{\rm th}$ were detected in six antineutrino detectors deployed in two near (flux-weighted baselines of 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to the expected number of antineutrinos assuming no oscillations at the far hall is $0.944\pm 0.007({\rm stat.}) \pm 0.003({\rm syst.})$. An analysis of the relative rates in six detectors finds $\sin^22\theta_{13}=0.089\pm 0.010({\rm stat.})\pm0.005({\rm syst.})$ in a three-neutrino framework.

Full Author List:

F. P. An, Q. An, J. Z. Bai, A. B. Balantekin, H. R. Band, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, G. F. Cao, J. Cao, R. Carr, W. T. Chan, J. F. Chang, Y. Chang, C. Chasman, H. S. Chen, H. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. Chen, Y. X. Chen, J. J. Cherwinka, M. C. Chu, J. P. Cummings, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, E. Draeger, X. F. Du, D. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, R. L. Gill, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, R. L. Hahn, S. Hans, H. F. Hao, M. He, Q. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, H. X. Huang, H. Z. Huang, X. T. Huang, P. Huber, V. Issakov, Z. Isvan, D. E. Jaffe, S. Jetter, X. L. Ji, X. P. Ji, H. J. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, F. Li, G. S. Li, Q. J. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. C. Liu, J. L. Liu, Y. B. Liu, C. Lu, H. Q. Lu, A. Luk, K. B. Luk, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, D. Mohapatra, Y. Nakajima, J. Napolitano, D. Naumov, I. Nemchenok, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, K. Shih, H. Steiner, G. X. Sun, J. L. Sun, N. Tagg, Y. H. Tam, H. K. Tanaka, X. Tang, H. Themann, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, B. Viren, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Y. Wei, Y. D. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, Y. Williamson, T. Wise, H. L. H. Wong, E. T. Worcester, F. F. Wu, Q. Wu, J. B. Xi, D. M. Xia, Z. Z. Xing, J. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, L. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, Z. Y. Yu, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

F. P. An, J. Z. Bai, A. B. Balantekin, et al., “Observation of electron-antineutrino disappearance at Daya Bay”, March 8, 2012,

The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angle θ13 with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GWth reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With 55 days of data, 10416 (80376) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is  R=0.940 ±0.011( stat) ± 0.004( syst). A rate-only analysis finds sin2 2 θ13 - 0.092 ± 0.016( stat}) ± 0.005(syst) in a three-neutrino framework.

Full Author list: F. P. An, J. Z. Bai, A. B. Balantekin, H. R. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, G. F. Cao, J. Cao, R. Carr, W. T. Chan, J. F. Chang, Y. Chang, C. Chasman, H. S. Chen, H. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. Chen, Y. X. Chen, J. J. Cherwinka, M. C. Chu, J. P. Cummings, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, L. Dong, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, V. Ghazikhanian, R. L. Gill, J. Goett, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, L. S. Greenler, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, R. L. Hahn, S. Hans, M. He, Q. He, W. S. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, T. H. Ho, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, T. Hu, H. X. Huang, H. Z. Huang, P. W. Huang, X. Huang, X. T. Huang, P. Huber, Z. Isvan, D. E. Jaffe, S. Jetter, X. L. Ji, X. P. Ji, H. J. Jiang, W. Q. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, K. Lau, L. Lebanowski, J. Lee, M. K. P. Lee, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, B. Li, F. Li, G. S. Li, J. Li, Q. J. Li, S. F. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Z. B. Li, H. Liang, J. Liang, C. J. Lin, G. L. Lin, S. K. Lin, S. X. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, B. J. Liu, C. Liu, D. W. Liu, H. Liu, J. C. Liu, J. L. Liu, S. Liu, X. Liu, Y. B. Liu, C. Lu, H. Q. Lu, A. Luk, K. B. Luk, T. Luo, X. L. Luo, L. H. Ma, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, B. Mayes, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, D. Mohapatra, J. E. Morgan, Y. Nakajima, J. Napolitano, D. Naumov, I. Nemchenok, C. Newsom, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, A. Pagac, S. Patton, C. Pearson, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, R. Rosero, B. Roskovec, X. C. Ruan, B. Seilhan, B. B. Shao, K. Shih, H. Steiner, P. Stoler, G. X. Sun, J. L. Sun, Y. H. Tam, H. K. Tanaka, X. Tang, H. Themann, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. Tull, B. Viren, S. Virostek, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, T. Wang, W. Wang, X. Wang, X. Wang, Y. F. Wang, Z.Wang, Z.Wang, Z. M.Wang, D. M.Webber, Y. D.Wei, L. J.Wen, D. L.Wenman, K. Whisnant, C. G. White, L. Whitehead, C. A. Whitten Jr., J. Wilhelmi, T. Wise, H. C. Wong, H. L. H. Wong, J. Wong, E. T. Worcester, F. F. Wu, Q. Wu, D. M. Xia, S. T. Xiang, Q. Xiao, Z. Z. Xing, G. Xu, J. Xu, J. Xu, J. L. Xu, W. Xu, Y. Xu, T. Xue, C. G. Yang, L. Yang, M. Ye, M. Yeh, Y. S. Yeh, K. Yip, B. L. Young, Z. Y. Yu, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, K. Zhang, Q. X. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

2007

Chin Guok, Jason R Lee, Karlo Berket, “Improving the Bulk Data Transfer Experience”, Management of IP Networks and Services Special Issue, January 1, 2007,

Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network that is logically separate from the production IP core network. One of the requirements of the science data network is the ability to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path.  In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation.  In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

2005

Antony Antony, Johan Blom, Cees de Laat, Jason Lee, “Exploring practical limitations of TCP over TransAtlantic networks”, the DataTAG Project, special issue, Future Generation Computer Systems, volume 21 issue 4 (2005), January 1, 2005,

2003

Antony Antony, Johan Blom, Cees de Laat, Jason Lee, Wim Sjouw,, “Microscopic Examination of TCP Flows Over Transatlantic Links”, iGrid2002 special issue, Future Generation Computer Systems, volume 19 issue 6, January 1, 2003,

2002

D. Gunter, B. Tierney, K. Jackson, J. Lee, M. Stoufer, “Dynamic Monitoring of High-Performance Distributed Applications”, Proceedings of the 11th IEEE Symposium on High Performance Distributed Computing, June 1, 2002, LBNL 49698

2001

B. Allcock, Foster, I., Nefedova, V., Chervenak, A., Deelman, E., Kesselman, C., Sim, A., Shoshani, A., Lee, J., Drach, B., Williams, D, “High-Performance Remote Access to Climate Simulation Data: A Challenge Problem for Data Grid Technologies”, Proceeding of the IEEE Supercomputing 2001 Conference, November 1, 2001,

J. Lee, D. Gunter, B. Tierney, W. Allock, J. Bester, J.Bresnahan, S. Tecke, “Applied Techniques for High Bandwidth Data Transfers across Wide Area Networks”, CHEP01 Beijing China, September 1, 2001, LBNL 46269

B. Tierney, D. Gunter, J. Lee, M. Stoufer, “Enabling Network-Aware Applications”, Proceedings of the 10th IEEE Symposium on High Performance Distributed Computing, August 1, 2001, LBNL 47611

D. Agarwal, B. Tierney, D. Gunter, J. Lee, and W. Johnston, “Network Aware High-Performance Distributed Applications”, Proceedings of the Workshop on New Visions for Large-Scale Networks: Research and Applications, March 1, 2001, LBNL 47518

2000

D. Gunter, B. Tierney, B. Crowley, M. Holding, J. Lee, “NetLogger: A Toolkit for Distributed System Performance Analysis”, Proceedings of the IEEE Mascots 2000 Conference, August 1, 2000, LBNL 46269

1998

W. Johnston, J. Guojun, C. Larsen, J. Lee, G. Hoo, M. Thompson, B. Tierney (LBNL) and J. Terdiman (Kaiser Permanente Division of Research), “Real-Time Generation and Cataloguing of Large Data-Objects in Widely Distributed Environments”, International Journal of Digital Libraries, special issue on "Digital Libraries in Medicine,", May 1, 1998,

1994

Tierney, B., W. Johnston, Hanan Herzog, G. Hoo, G. Jin, and J. Lee, “The Image Server System: An Example of a Gigabit Network Testbed Application”, Gigabit Jamboree, Washington DC, January 1, 1994, LBNL LBL-36318

Conference Paper

2012

Scott Campbell, Jason Lee, “Prototyping a 100G Monitoring System”, 20th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2012), February 12, 2012,

The finalization of the 100 Gbps Ethernet Specification has been a tremendous increase in these rates arriving into data centers creating the need to perform security monitoring at 100 Gbps no longer simply an academic exercise. We show that by leveraging the ‘heavy tail flow effect’ on the IDS infrastructure, it is possible to perform security analysis at such speeds within the HPC environment. Additionally, we examine the nature of current traffic characteristics, how to scale an IDS infrastructure to 100Gbps.

2011

Scott Campbell, Jason Lee, “Intrusion Detection at 100G”, The International Conference for High Performance Computing, Networking, Storage, and Analysis, November 14, 2011,

Driven by the growing data transfer needs of the scientific community and the standardization of the 100 Gbps Ethernet Specification, 100 Gbps is now becoming a reality for many HPC sites. This tenfold increase in bandwidth creates a number of significant technical challenges. We show that by using the heavy tail flow effect as a filter, it should be possible to perform active IDS analysis at this traffic rate using a cluster of commodity systems driven by a dedicated load balancing mechanism. Additionally, we examine the nature of current network traffic characteristics applying them to 100Gpbs speeds

Scott Campbell, Steve Chan and Jason Lee, “Detection of Fast Flux Service Networks”, Australasian Information Security Conference 2011, January 17, 2011,

Fast Flux Service Networks (FFSN) utilize high availability server techniques for malware distribution. FFSNs are similar to commercial content distribution networks (CDN), such as Akamai, in terms of size, scope, and business model, serving as an outsourced content delivery service for clients.  Using an analysis of DNS traffic, we derive a sequential hypothesis testing algorithm based entirely on traffic characteristics and dynamic white listing to provide real time detection of FFDNs in live traffic.  We improve on existing work, providing faster and more accurate detection of FFSNs. We also identify a category of hosts not addressed in previous detectors - Open Content Distribution Networks (OCDN) that share many of the characteristics of FFSNs

2010

Sim A., Gunter D., Natarajan V., Shoshani A., Williams D., Long J., Hick J., Lee J., Dart E., “Efficient Bulk Data Replication for the Earth System Grid”, Data Driven E-science: Use Cases and Successful Applications of Distributed Computing Infrastructures (Isgc 2010), Springer-Verlag New York Inc, 2010, 435,

Kettimuthu Raj, Sim Alex, Gunter Dan, Allcock Bill, Bremer Peer T., Bresnahan John, Cherry Andrew, Childers Lisa, Dart Eli, Foster Ian, Harms Kevin, Hick Jason, Lee Jason, Link Michael, Long Jeff, Miller Keith, Natarajan Vijaya, Pascucci Valerio, Raffenetti Ken, Ressman David, Williams Dean, Wilson Loren, Winkler Linda, “Lessons Learned from Moving Earth System Grid Data Sets over a 20 Gbps Wide-Area Network”, Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing HPDC 10, New York NY USA, 2010, 316--319,

A. Sim, D. Gunter, V. Natarajan, A. Shoshani, D. Williams, J. Long, J. Hick, J. Lee, E. Dart, “Efficient Bulk Data Replication for the Earth System Grid”, International Symposium on Grid Computing, 2010,

2007

Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern Paxson, Brian Tierney,, “The NIDS Cluster: Scalable, Stateful Network Intrusion Detection on Commodity Hardware”, Proceedings of the Symposium on Recent Advances in Intrusion Detection, Queensland, Australia,, January 1, 2007,

2006

C. Guok, D. Robertson, M. Thompson, J. Lee, B. Tierney and William Johnston, “Intra and Interdomain Circuit Provisioning Using the OSCARS Reservation System”, GridNETS 2006, January 1, 2006, LBNL 60373

Ruoming Pang, Mark Allman, Vern Paxson, Jason Lee, “The Devil and Packet Trace Anonymization”, ACM Computer Communication Review, January 1, 2006, LBNL 57630

2005

Ruoming Pang, Mark Allman, Mike Bennett, Jason Lee, Vern Paxson, Brian Tierney, “A First Look at Modern Enterprise Traffic”, ACM SIGCOMM/USENIX Internet Measurement Conference, October 1, 2005,

Daniel K. Gunter, Keith R. Jackson, David E. Konerding, Jason R. Lee, Brian L. Tierney, “Essential Grid Workflow Monitoring Elements”, The 2005 International Conference on Grid Computing and Applications, January 1, 2005, LBNL 57428

2004

Wim Sjouw, Antony Antony, Johan Blom, Cees de Laat and Jason Lee, “TCP Behaviour On Transatlantic Lambda's”, Grid Computing: First European Across Grids Conference, Santiago de Compostela, Spain, February 1, 2004,

Ian Foster, et al., “The Grid2003 Production Grid: Principles and Practice”, HPDC 2004, January 1, 2004,

2002

J. Lee, D. Gunter, M. Stoufer, B. Tierney, “Monitoring Data Archives for Grid Environments”, Proceeding of IEEE Supercomputing 2002 Conference, November 1, 2002, LBNL 50216

2000

W. Bethel, Tierney, B., Lee, J., Gunter, D., Lau, S., “Using High-Speed WANs and Network Data Caches to Enable Remote and Distributed Visualization”, Proceeding of the IEEE Supercomputing 2000 Conference, November 1, 2000, LBNL 45365

Tierney, B., W. Johnston, J. Lee,, “A Cache-based Data Intensive Distributed Computing Architecture for Grid Applications”, CERN School of Computing, September 1, 2000,

1996

Johnston, W., B. Tierney, J. Lee, G. Hoo, and M. Thompson, “Distributed Large Data-Object Environments: End-to-End Performance Analysis of High Speed Distributed Storage Systems in Wide Area ATM Networks”, Fifth NASA Goddard Space Flight Center Conference on Mass Storage Systems and Technologies, University of Maryland, College Park, MD, September 1, 1996, LBNL 39064

1995

Tierney, B., W. Johnston, G. Hoo, J. Lee, “Demonstrations of a Remote Distributed Parallel Storage Server (DPSS)”, Supercomputing 1995, November 1, 1995, LBNL 38001

Tierney, B., W. Johnston, G. Hoo, J. Lee, “Performance Analysis in High-Speed Wide Area ATM Networks: Top-to-bottom end-to-end Monitoring”, MAGIC Symposium, Minneapolis MN, August 1995, August 1, 1995,

Johnston, W. E., B. L. Tierney, H. M. Herzog, G. Hoo, G. Jin, J. R. Lee, “Distributed Parallel Data Storage Systems: A Scalable Approach to High Speed Image Servers”, ACM-Multimedia, 1995, LBNL LBL-35408

1994

Tierney, B., W. Johnston, H. Herzog, G. Hoo, G. Jin, and J. Lee, “The Image Server System: A Scalable, Software Approach to High-Speed Distributed Storage,”, ARPA Networking PI Meeting, Santa Fe, NM, October 1, 1994, LBNL 36218

Johnston, W. E., B. L. Tierney, H. M. Herzog, G. Hoo, G. Jin, J. R. Lee, “System Issues in Implementing High Speed Distributed Parallel Storage Systems”, Usenix 1994, 1994,

Johnston, W. E., B. L. Tierney, H. M. Herzog, G. Hoo, G. Jin, J. R. Lee, “Using High Speed Networks to Enable Distributed Parallel Image Server Systems”, SuperComputing 1994, January 1, 1994,

Report

2006

E. Wes Bethel, Scott Campbell, Eli Dart, Jason Lee, Steven A. Smith, Kurt Stockinger, Brian Tierney, Kesheng Wu, “Interactive Analysis of Large Network Data Collections Using Query-Driven Visualization”, DOE Report, September 26, 2006, LBNL 59166

Realizing operational analytics solutions where large and complex data must be analyzed in a time-critical fashion entails integrating many different types of technology. Considering the extreme scale of contemporary datasets, one significant challenge is to reduce the duty cycle in the analytics discourse process. This paper focuses on an interdisciplinary combination of scientific data management and visualization/analysistechnologies targeted at reducing the duty cycle in hypothesis testing and knowledge discovery. We present an application of such a combination in the problem domain of network traffic dataanalysis. Our performance experiment results, including both serial and parallel scalability tests, show that the combination can dramatically decrease the analytics duty cycle for this particular application. The combination is effectively applied to the analysis of network traffic data to detect slow and distributed scans, which is a difficult-to-detect form of cyberattack. Our approach is sufficiently general to be applied to a diverse set of data understanding problems as well as used in conjunction with a diverse set of analysis and visualization tools

1994

Tierney, B., W. Johnston, L.T. Chen, H. Herzog, G. Hoo, and J. Lee, “The Image Server System: A High-Speed Parallel Distributed Data Server”, July 1, 1994, LBNL 36002

Johnston, W., B. Tierney, H. Herzog, G. Hoo, G.Jin, J. Lee, “Time and MAGIC: Precision Network Timing in the MAGIC Testbed”, MAGIC Technical Symposium, Lawrence Kansas, July, 1994, June 1, 1994,

1969

Brian L. Tierney, Tom Dunigan, Jason R. Lee, Dan Gunter, Martin Stoufer, “Improving Distributed Application Performance Using TCP Instrumentation”, December 31, 1969, LBNL 52590

Thesis/Dissertation

1995

Design and Implementation of a Image Server System, Jason R. Lee, October 1995,