NERSCPowering Scientific Discovery Since 1974

Select Publications

Journal Article

2013

S. Dosanjh, R. Barrett, D. Doerfler, S. Hammond, K. Hemmert, M. Heroux, P. Lin, K. Pedretti, A. Rodrigues, T. Trucano, J.Juitjens, “Exascale Design Space Exploration and Co-Design”, Future Generation Computer Systems, special issue on Extreme Scale Parallel Architectures and Systems, in press, available online, May 2, 2013,

2011

J. Dongarra et al., “The International Exascale Software Project Roadmap”, International Journal of High Performance Computing Applications, 25:1, 2011,

2010

K. Alvin, B. Barrett, R. Brightwell, S. Dosanjh, A. Geist, S. Hemmert, M. Heroux, D. Kothe, R. Murphy, J. Nichols, R. Oldfield, A. Rodrigues, J. Vetter, “On the Path to Exascale”, International Journal of Distributed Systems and Technologies, 1(2):1– 22, May 22, 2010,

J. Tomkins, R. Brightwell, W. Camp, S. Dosanjh et al., “The Red Storm Architecture and Early Experiences with Multi-Core Processors”, International Journal of Distributed Systems and Technologies, Vol. 1, Issue 2, pp. 74-93, April 19, 2010,

2009

A. Geist, S. Dosanjh, “IESP Exascale Challenge: Co-Design of Architectures and Algorithms”, International Journal of High Performance Computing, Vol. 23, No. 4, pp. 401–402, September 18, 2009,

Conference Paper

2012

R. Barrett, S. Dosanjh, et al., “Towards Codesign in High Performance Computing Systems”, IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, November 5, 2012,

2011

D. Doerfler, S. Dosanjh, J. Morrison, M. Vigil, “Production Petascale Computing”, Cray Users Group Meeting, Fairbanks, Alaska, 2011,

2010

S. Hu, R. Murphy, S. Dosanjh, K. Olukoton, S. Poole, “Hardware/Software Co- Design for High Performance Computing”, Proceedings of CODES+ISSS’10, October 24, 2010,

A. Rodrigues, S. Dosanjh, S. Hemmert, “Co-Design for High Performance Computing”, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics, Rhodes, Greece, September 18, 2010,

J. Ang, D. Doerfler, S. Dosanjh, K. Koch, J. Morrison, M. Vigil, “The Alliance for Computing at the Extreme Scale”, Proceedings of the Cray Users Group Meeting, Edinburgh, Scotland, May 24, 2010,

Book Chapter

2014

Sudip Dosanjh, Shane Canon, Jack Deslippe, Kjiersten Fagnan, Richard Gerber, Lisa Gerhardt, Jason Hick, Douglas Jacobsen, David Skinner, Nicholas J. Wright, “Extreme Data Science at the National Energy Research Scientific Computing (NERSC) Center”, Proceedings of International Conference on Parallel Programming – ParCo 2013, ( March 26, 2014)

2013

Richard A. Barrett, Shekhar Borkar, Sudip S. Dosanjh, Simon D. Hammond, Michael A. Heroux, X. Sharon Hu, Justin Luitjens, Steven G. Parker, John Shalf, Li Tang, “On the Role of Co-design in High Performance Computing”, Transition of HPC Towards Exascale Computing, E.H. D'Hollander et. al (Eds.), IOS Press, 2013, ( November 1, 2013)

2011

J. Ang, R. Brightwell, S. Dosanjh, et al., “Exascale Computing and the Role of Co-Design”, ( 2011)

2010

John Shalf, S. Dosanjh, John Morrison, “Exascale Computing Technology Challenges”, VECPAR, edited by J.M.L.M. Palma et al. , (Springer-Verlag: 2010) Pages: 1-25

High Performance Computing architectures are expected to change dramatically in the next decade as power and cooling constraints limit increases in microprocessor clock speeds. Consequently computer companies are dramatically increasing on-chip parallelism to improve performance. The traditional doubling of clock speeds every 18-24 months is being replaced by a doubling of cores or other parallelism mechanisms. During the next decade the amount of parallelism on a single microprocessor will rival the number of nodes in early massively parallel supercomputers that were built in the 1980s. Applications and algorithms will need to change and adapt as node architectures evolve. In particular, they will need to manage locality to achieve performance. A key element of the strategy as we move forward is the co-design of applications, architectures and programming environments. There is an unprecedented opportunity for application and algorithm developers to influence the direction of future architectures so that they meet DOE mission needs. This article will describe the technology challenges on the road to exascale, their underlying causes, and their effect on the future of HPC system design.

Report

2013

Rolf Riesen, Sudip Dosanjh, Larry Kaplan, “The ExaChallenge Symposium”, IBM Research Paper, August 26, 2013,

2011

R. Sevens, A. White, S. Dosanjh, et al., “Scientific Grand Challenges: Architectures and Technology for Extreme-Scale Computing Report”, 2011,

2010

R. Leland and S. Dosanjh, “Computing at Exascale: A Value Proposition”, Sandia National Laboratories Report, November 16, 2010,