
Helen He !
!
NCAR Multi-core 5 Workshop!
Sept 16-17, 2015

Lessons Learned
from Selected
NESAP
Applications

The Big Picture

•  The	next	large	NERSC	produc6on	system	“Cori”	will	be	Intel	
Xeon	Phi	KNL	(Knights	Landing)	architecture	
–  Self-hosted	(not	an	accelerator).	72	cores	per	node,	4	hardware	threads	

per	core		
–  Larger	vector	units	(512	bits)	
–  On	package	high-bandwidth	memory	(HBM)	
–  Burst	Buffer	

•  To	achieve	high	performance,	applica6ons	need	to	explore	
more	on-node	parallelism	with	thread	scaling	and	
vectoriza6on,	also	to	u6lize	HBM	and	burst	buffer	op6ons.		

•  Hybrid	MPI/OpenMP	is	a	recommended	programming	
model,	to	achieve	scaling	capability	and	code	portability.		

-	2	-	

NERSC Exascale Science Application
Program (NESAP)

•  Goal:	to	prepare	DOE	Office	of	Science	user	community	for	
Cori	manycore	architecture	

•  20	applica6ons	were	selected	as	Tier	1	(with	postdocs)	and	
Tier	2	applica6ons	to	work	closely	with	Cray,	Intel	and	NERSC	
staff.		Addi6onal	26	Tier	3	teams.	Share	lessons	learned	with	
broader	user	community.	

•  Available	resources	are:		
–  Access	to	vendor	resources	and	staff	including	“dungeon	sessions”	with	

Intel	and	Cray	Center	of	Excellence	
–  Early	access	to	KNL	“whitebox”	systems	
–  Early	access	and	Rme	on	Cori	
–  Trainings,	workshops,	and	hackathons	
–  Intel	Xeon	Phi	User	Group	(IXPUG)	

-	3	-	

NESAP Code Coverage

Breakdown	of	

Applica6on	Hours	on	
Hopper	and	Edison	2013	

Lessons Learned from Selected Applications

•  PresentaRon	materials	contributed	by	NERSC	ApplicaRon	
Readiness	Team	(NERSC	Staff)	and	NESAP	teams	(applicaRon	
developers,	NERSC	liaisons,	Cray	Center	of	Excellence	staff,	and	
Intel	staff)	

-	5	-	

Applica6on	 Science	Area	 		PI	 NERSC	Liaison	

BerkeleyGW	 Material	Sciences	 Jack	Deslippe	 Jack	Deslippe	

CESM	 Climate	 John	Dennis	 Helen	He	

EmGeo	 Earth	Science	 Gregory	Newman	 Sco]	French	

NWChem	 Chemistry	 Wibe	De	Jong,	
Eric	Bylaska	 Zhengji	Zhao	

XGC1	 Fusion	 Choong-Seock	
Chang	 Helen	He	

Recommended Optimization Path

Performance	
affected	by	
Half-Clock	
Speed?	

Run	at	“Half	
Clock”	
Speed	

Run	in	“Half	
Packed”	
Mode	

Performance	
affected	by	

Half-
Packing?	

ParRally	Memory	
Bandwidth	Bound	
(can	also	use	VTune	

to	measure	
bandwidth	usage)	

ParRally	
CPU	Bound	

Likely	parRally	
memory	latency	

Bound		
(assuming	not	IO	or	
communicaRon	

bound)		

Yes	

Yes	

No	 No	

Increase	FLops	per	
byte	from	memory	

in	algorithm.		
	Explore	using	HBM	

for	key	arrays	

Improve	OpenMP	
Scaling	and	
VectorizaRon	

Reduce	memory	
request	per	flop	
in	algorithm.	
Use	more	

virtual	threads.	

Kernel Optimizations Examples

-	7	-	

BerkeleyGW Optimization Steps

-	8	-	

Add	OpenMP	

Ensure	
VectorizaRon	

Refactor	to	Have	3	
Loop	Structure:	
	
Outer:	MPI	
Middle:	OpenMP	
Inner:	VectorizaRon	

•  Target	more	on-node	parallelism.	(MPI	model	already	failing	users)	
•  Ensure	key	loops/kernels	can	be	vectorized.		

Emgeo: 7 SpMV Kernel Variants

-	9	-	

Thread	scaling	on	HSW	EX	(AVX2)	

1	=	original	
4	=	HSW	winner	

•  Span	the	space	of	likely	
op6miza6ons	to	assess	
performance	impact	on	non-KNL	
architectures	
•  Alignment	tweaks;	Loop	

reordering,	unrolling;	Memory	
layout	opRmizaRons;	Fortran	
“SIMD-izaRon”	

•  Ready for profiling when we
have KNL access	

•  Winner:	Only	~8%	speedup	over	
the	original	code	
–  Only	certain	variants	show	

vectorizaRon	speedup	on	HSW	

	

What does the code look like?

-	10	-	

!$omp	parallel	do	private(j,ztmp)	
		do	i	=	1,	m	
				ztmp	=		(0.0d0,	0.0d0)	
				do	j	=	1,	ndiag	
						ztmp	=	ztmp	+	mat(j,i)	*	x(ind(j,i))	
				end	do	
				z(iorig(i))	=	ztmp	
		end	do	

!$omp	parallel	do	private(ztmp)	
		do	i	=	1,	m	/	SIMDWIDTH	
				ztmp	=								mat(:,	1,i)	*	x(ind(:,	1,i))	
				ztmp	=	ztmp	+	mat(:,	2,i)	*	x(ind(:,	2,i))	
				ztmp	=	ztmp	+	mat(:,	3,i)	*	x(ind(:,	3,i))	
						...	snip	...	
				z(iorig(i))	=	ztmp	
		end	do	

!$omp	parallel	do	private(ztmp)	
		do	i	=	1,	m	
				ztmp	=								mat(i,	1)	*	x(ind(i,	1))	
				ztmp	=	ztmp	+	mat(i,	2)	*	x(ind(i,	2))	
				ztmp	=	ztmp	+	mat(i,	3)	*	x(ind(i,	3))	
						...	snip	...	
				z(iorig(i))	=	ztmp	
		end	do	

Original	

Too	many	streams?	

HSW	winner	

**	omigng	alignment-related	direc6ves,	etc.	

•  Some	traverse	many	streams	of	
data	concurrently	
–  Others	are	more	conservaRve	

(including	the	winning	variant)	
–  Will	the	more	bandwidth-hungry	

variants	do	be]er	on	KNL?		Also	
show	largest	instrucRon	count	
drop	from	AVX2	to	AVX512.	

Improve OpenMP Scaling
Examples

-	11	-	

XGC1: Remove “-heap-arrays 64” Compiler Flag

•  This	Intel	compiler	flag	puts	automa6c	arrays	and	temp	of	

size	64	kbytes	or	larger	on	heap	instead	of	stack.		
•  Surprisingly	it	slows	down	both	the	collision	and	pushe	

kernels	by	>6X.			
•  Alloca6on	and	access	of	private	copies	on	the	heap	are	very	

expensive.	
•  Does	not	affect	explicit-shape	arrays.	
•  Removed	this	flag	for	the	collision	kernel,	and	set	

OMP_STACKSIZE	to	a	large	value	
•  Run	6me	improves	from	348	sec	to	43	sec.	
•  Alterna6ve:	use	!$OMP	THREADPRIVATE.		Downside:	data	

has	to	be	sta6c,	not	allocatable.	

	

XGC1: Explore Nested OpenMP

•  Always	make	sure	to	use	best	thread	affinity.		Avoid	using	threads	across	

NUMA	domains.	
•  Currently:	

•  Is	a	bit	slower	than	(work	ongoing):	

	

•  Refer	to	NERSC	“Nested	OpenMP”	web	page	for	achieving	process	and	
thread	affinity	using	different	compilers	on	different	NERSC	systems:	
–  h]ps://www.nersc.gov/users/computaRonal-systems/edison/running-jobs/

using-openmp-with-mpi/nested-openmp/	
	

-	13	-	

export	OMP_NUM_THREADS=6,4	
export	OMP_PROC_BIND=spread,close	
export	OMP_NESTED=TRUE	
Export	OMP_STACKSIZE=8000000	
aprun	-n	200	-N	2	-S	1	-j	2	-cc	numa_node	./xgca	

export	OMP_NUM_THREADS=24	
export	OMP_NESTED=TRUE	
export	OMP_STACKSIZE=8000000	
aprun	-n	200	-d	24	-N	2	-S	1	-j	2	-cc	numa_node	./xgca	

NWChem: OpenMP “Reduce” Algorithm

-	14	-	

•  Plane wave Lagrange multiplier
•  Many matrix multiplications of complex numbers, C = A x B
•  Smaller matrix products: FFM, typical size 100x10,000x100
•  Original threading scaling with MKL not satisfactory

•  OpenMP “Reduce” or “Block” algorithm
-  Distribute work on A and B along the k dimension
-  A thread puts its contribution in a buffer of size m x n
-  Buffers reduced to produce C
-  OMP teams of threads

FFM	

NWChem: OpenMP “Reduce” Algorithm

•  Beoer	for	smaller	inner	dimensions,	i.e.	for	FFMs	
•  Mul6ple	FFMs	can	be	done	concurrently	in	different	thread	pools	
•  Threading	enables	us	to	use	all	240	hardware	threads	
•  Best	Reduce:	10	MPI,	6	teams	of	4	threads	
	

-	15	-	

										MKL	
1MPI,	240	threads		

											Best	“Reduce”	
10	MPI,	6	teams	of	4	threads	

NWChem: OpenMP Scaling in CCSD(T)

•  Double	terms	usually	dominate	in	(T)	term	
•  Other	terms	become	new	performance	booleneck	on	many-

core	architectures	-	Amdahl’s	Law	

-	16	-	

NWChem: OpenMP Scaling in CCSD(T)

-  Threading	enables	us	to	use	all	240	hardware	threads	
-  Op6mized	code	performs	2.5X	beoer	than	baseline	
-  Up	to	65X	beoer	compared	to	1	MPI	rank	

-	17	-	

Vectorization Examples

-	18	-	

XGC1: Collision Kernel
 Split	dimensions,	
interchange	array	
index,	unroll	loops,	
40%	kernel	speedup	

Original

real(8),dimension

 (5,(col_f_nvr-1)*(col_f_nvz-1),
 (col_f_nvr-1)*(col_f_nvz-1)) :: Ms

do index_ip = 1, mesh_Nzm1
 do index_jp = 1, mesh_Nrm1
 index_2dp = index_jp+mesh_Nrm1*(index_ip-1)

 tmp_vol = cs2%local_center_volume(index_jp)
 tmp_f_half_v = f_half(index_jp, index_ip) *

 tmp_vol
 tmp_dfdr_v = dfdr(index_jp, index_ip) *

 tmp_vol
 tmp_dfdz_v = dfdz(index_jp, index_ip) *

 tmp_vol

 tmpr(1:3)= tmpr(1:3)+

 Ms(1:3,index_2dp,index_2D)*
 tmp_f_half_v

 tmpr(5) = tmpr(5) +
 Ms(4,index_2dp,index_2D)*tmp_dfdr_v +
 Ms(2,index_2dp,index_2D)*tmp_dfdz_v

 tmpr(6) = tmpr(6) +
 Ms(3,index_2dp,index_2D)*tmp_dfdz_v +
 Ms(5,index_2dp,index_2D)*tmp_dfdr_v

 enddo !index_jp
enddo !index_ip

Optimized

real (8),dimension

 ((col_f_nvr-1),5,(col_f_nvz-1),
 (col_f_nvr-1)*(col_f_nvz-1)) :: Ms

do index_ip = 1, mesh_Nzm1
 do index_jp = 1, mesh_Nrm1
 index_2dp = index_jp+mesh_Nrm1*(index_ip-1)
 tmp_vol = cs2%local_center_volume(index_jp)
 tmp_f_half_v = f_half(index_jp, index_ip) *

 tmp_vol
 tmp_dfdr_v = dfdr(index_jp, index_ip) * tmp_vol
 tmp_dfdz_v = dfdz(index_jp, index_ip) *

 tmp_vol

 tmpr(index_jp,1) = tmpr(index_jp,1) +

 Ms(index_jp,1,index_ip,index_2D)*
 tmp_f_half_v

 tmpr(index_jp,2) = tmpr(index_jp,2) +
 Ms(index_jp,2,index_ip,index_2D)*
 tmp_f_half_v

 tmpr(index_jp,3) = tmpr(index_jp,3) +
 Ms(index_jp,3,index_ip,index_2D)*
 tmp_f_half_v

 tmpr(index_jp,5) = tmpr(index_jp,5) +
 Ms(index_jp,4,index_ip,index_2D)*
 tmp_dfdr_v + Ms(index_jp,

2,index_ip,index_2D)* tmp_dfdz_v
 tmpr(index_jp,6) = tmpr(index_jp,6) +

 Ms(index_jp,3,index_ip,index_2D)*
 tmp_dfdz_v + Ms(index_jp,

5,index_ip,index_2D)* tmp_dfdr_v
 enddo !index_jp
enddo !index_ip
do i=1,6
 tmpr(1,i)=sum(tmpr(:,i))
enddo

BerkeleyGW

ngpown	typically	in	
100’s	to	1000s.	
Good	for	many	
threads.	

ncouls	typically	in	
1000s	-	10,000s.	
Good	for	
vectorizaRon.		

Original	inner	loop.	
Too	small	to	
vectorize!	

A]empt	to	save	
work	breaks	
vectorizaRon	and	
makes	code	slower.	

!$OMP	DO	reduc6on(+:achtemp)	
		do	my_igp	=	1,	ngpown	
				...	
				do	iw=1,3	
	
						scht=0D0	
						wxt	=	wx_array(iw)	
	
						do	ig	=	1,	ncouls	
	
								!if	(abs(w6lde_array(ig,my_igp)	*	eps(ig,my_igp))	.lt.	TOL)	cycle	
	
								wdiff	=	wxt	-	w6lde_array(ig,my_igp)	
								delw	=	w6lde_array(ig,my_igp)	/	wdiff	
								...	
								scha(ig)	=	mygpvar1	*	aqsntemp(ig)	*	delw	*	eps(ig,my_igp)	
								scht	=	scht	+	scha(ig)	
	
						enddo	!	loop	over	g	
						sch_array(iw)	=	sch_array(iw)	+	0.5D0*scht	
	
				enddo				
	
				achtemp(:)	=	achtemp(:)	+	sch_array(:)	*	vcoul(my_igp)	
	
		enddo	

3X	faster	on	
SandyBridge,	8X	
faster	on	KNC	

CESM MG2 Kernel: OMP SIMD ALIGNED

•  !$OMP	SIMD	ALIGNED	(…)	
–  OpenMP	standard,	portable	
–  Tells	the	compiler	that	parRcular	arrays	in	the	list	are	aligned	
–  Asserts	there	are	no	dependencies	
–  Requires	to	use	PRIVATE	or	REDUCTION	clauses	to	ensure	correctness	
–  Forces	the	compiler	to	vectorize,	whether	or	not	it	thinks	if	it	helps	

performance.	
•  !DIR$	ASSUME_ALIGNED	(…)	

–  Tells	the	compiler	that	parRcular	arrays	in	the	list	are	aligned	
–  Intel	specific,	not	portable	

•  !DIR$	VECTOR_ALIGNED	
–  Tells	the	compiler	all	arrays	in	a	loop	are	aligned	
–  Intel	specific,	not	portable	

	
-	21	-	

CESM MG2 Kernel: OMP SIMD ALIGNED

•  Using	the	“ALIGNED”	aoribute	achieved	8%	performance	

gain	when	the	list	is	explicitly	provided.	
•  However,	the	process	is	tedious	and	error-prone,	and	ouen	

6mes	impossible	in	large	real	applica6ons.	
–  !$OMP	SIMD	ALIGNED	added	in	48	loops	in	MG2	kernel,	many	with	

list	of	10+	variables	
•  Inquired	with	Fortran	Standard:	

–  Equivalent	of	“!$DIR	ATTRIBUTES	ALIGNED:	64	::	A”	
•  C/C++	standard:	float	A[1000]	__a]ribute__((aligned(64)));	
•  Not	in	Fortran	standard	yet	

–  Equivalent	of	the	“-align	array64byte”	compiler	flag	
•  Exist	in	Intel	(Fortran	only)	and	Cray	compilers	
•  What	about	other	compilers?	

Using HBM Examples

-	23	-	

Simulate HBM Effect on a Dual Socket System

•  Iden6fy	the	candidate	(key	arrays)	for	HBM	
–  VTune	Memory	Access	tool	can	help	to	find	key	arrays	
-  Using	NUMA	affinity	to	simulate	HBM	on	a	dual	socket	system	
-  Use	FASTMEM	direcRves	and	link	with	jemalloc/memkind	libraries	

BGW	Results:	
• All	memory	on	Near	Me	

-	24	-	

On	Edison	(NERSC	Cray	XC30):	
real,	allocatable	::	a(:,:),	b(:,:),	c(:)	
!DIR$	ATTRIBUTE	FASTMEM	::	a,	b,	c	
%	module	load	memkind	jemalloc	
%	xn	-dynamic	-g	-O3	-openmp	mycode.f90	
%	export	MEMKIND_HBW_NODES=0	
%	aprun	-n	1	-cc	numa_node	numactl	--
membind=1	--cpunodebind=0	./
myexecutable	
	
On	Haswell:	
%	numactl	--membind=1	--cpunodebind=0	./
myexecutable	

	
Applica6on	

All	
memory	
on	far	
memory	

All	
memory	
on	near	
memory	

Key	
arrays	on	
near	
memory	

BerkeleyGW	 baseline	 52%	
faster	

52.4%	
faster	

EmGeo	 baseline	 40%	
faster	

32%	
faster	

XGC1	 baseline	 24%	
faster	

Conclusions

• NERSC	is	bringing	a	lot	of	resources	to	help	users:	training,	
postdocs,	Cray	and	Intel	staff,	deep	dive	sessions.	

• Op6mizing	code	for	Cori	will	likely	require	good	OpenMP	scaling,	
Vectoriza6on	and/or	effec6ve	use	of	HBM.	

• Applica6ons	can	op6mize	on	SandyBridge,	IvyBridge,	Haswell,	
and	KNC	architectures	to	prepare	for	Cori.		

• Always	profiling	and	understand	your	code	first	on	where	to	
work	on	improving	performance.	Use	tools	such	as	VTune,	vector	
advisor.	

•  Crea6ng	kernels	is	much	more	efficient	than	working	on	full	
codes.	

• Op6mizing	your	code	targe6ng	KNL	will	improve	performance	on	
all	architectures.	

•  Keep	portability	in	mind,	use	portable	programming	models.	

-	25	-	

Thank you.

-	26	-	

