Lessons Learned
from Selected

NESAP
Applications

Helen He

NP -1 =

at the
FOREFRONT

NCAR Multi-core 5 Workshop
Sept 16-17, 2015 i

=2, U.S. DEPARTMENT OF : A
Office of r/r_\‘ b

EN ERGY Science

The Big Picture L <

* The next large NERSC production system “Cori” will be Intel
Xeon Phi KNL (Knights Landing) architecture

— Self-hosted (not an accelerator). 72 cores per node, 4 hardware threads
per core

— Larger vector units (512 bits)

— On package high-bandwidth memory (HBM)
— Burst Buffer

* To achieve high performance, applications need to explore
more on-node parallelism with thread scaling and
vectorization, also to utilize HBM and burst buffer options.

* Hybrid MPI/OpenMP is a recommended programming
model, to achieve scaling capability and code portability.

o“"‘“""fa,* U.S. DEPARTMENT OF Ofﬂce Of

=
. ENERGY science -2- :‘_’hﬂ'ﬂ

BERKELEY LAB

NERSC Exascale Science Application s
Program (NESAP) E) s

* Goal: to prepare DOE Office of Science user community for
Cori manycore architecture

* 20 applications were selected as Tier 1 (with postdocs) and
Tier 2 applications to work closely with Cray, Intel and NERSC
staff. Additional 26 Tier 3 teams. Share lessons learned with
broader user community.

 Available resources are:

T

£k !

B 2
b.‘,m\m >

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science "3- &;;a\l%B

Access to vendor resources and staff including “dungeon sessions” with
Intel and Cray Center of Excellence

Early access to KNL “whitebox” systems
Early access and time on Cori

Trainings, workshops, and hackathons
Intel Xeon Phi User Group (IXPUG)

N
A
rrrrrrr "“l

NESAP Code Coverage EZ e

Breakdown of
Application Hours on - NESAP Tier-1, 2 Code

Hopper and Edison 2013 NESAP Proxy Code or Tier-3 Code

VASP

S3D
WRF

~ qglua
qlue

osiris

BerkeleyGW BerkeleyGW

U.S. DEPARTMENT OF Office of

ENERGY Science

y YEARS

Lessons Learned from Selected Applications = Lt

* Presentation materials contributed by NERSC Application
Readiness Team (NERSC Staff) and NESAP teams (application
developers, NERSC liaisons, Cray Center of Excellence staff, and

Intel staff)
L P R [Ty

BerkeleyGW Material Sciences Jack Deslippe Jack Deslippe

CESM Climate John Dennis Helen He

EmGeo Earth Science Gregory Newman Scott French

NWChem Chemistry g;?;&:;&ng’ Zhengji Zhao

XGC1 Fusion Eﬂgggg-Seock Helen He

u.s. DEPARTMENT OF | Office of ey

ENERGY Science = WEN

RENTOr S
4 >
£ 5\
% @ 4
), &
S5 i

Recommended Optimization Path NeRsc | [@ Y

Run in “Half
Packed”
Mode
Performance
affected by

Half-
Packing?

Yes l

4 Partially Memory
Bandwidth Bound

No

o

at the
FOREFRONT

Run at “Half Performance
Clock” affected by
Speed Half-Clock

Speed?

No
Partially /" Likely partially
CPU Bound memory latency
Bound

(assuming not IO or

communication
Improve OpenMP _ bound) V4

Scaling and
Vectorization

(can also use VTune
to measure 4
_ bandwidth usage) Y,

e "6;1,‘1 U.S. DEPARTMENT OF Ofﬂce Of \

EN ERGY Science

/" Reduce memory\

Increase FLops per request per flop
byte from memory in algorithm.

in algorithm. Use more
Explore using HBM _ virtual threads. /

for key arrays
4

BERKELEY LAB

YEARS

at the
FOREFRONT

1974-2014

R U.S. DEPARTMENT OF Office of

. ENERGY Science

~

frreeerer

A
|

BerkeleyGW Optimization Steps (e

e Target more on-node parallelism. (MPI model already failing users)
* Ensure key loops/kernels can be vectorized.

Sigma Summation Optimization Process

/ Add OpenMP

4007 W sandy-Bridge
B Xeon-Phi

Refactor to Have 3
Loop Structure:

Outer: MPI B

Middle: OpenMP
Inner: Vectorization

Walltime

Ensure
Vectorization

Rev. 4770 Rev. 4896 Rev. 5338 Rev. 5349

2 U.S. DEPARTMENT OF Office of Revision Number

‘ ENERGY Science

Emgeo: 7 SpMV Kernel Variants e

* Span the space of likely Thread scaling on HSW EX (AVX2)
optimizations to assess

scatter affinity 1T / core

performance impact on non-KNL ——
e e Bl variant 1 |
architectures B-@ variant 2
. B8 variant 3
* Alignment tweaks; Loop 10 B8 variant 4
reordering, unrolling; Memory K m-@ variant 5 ||
layout optimizations; Fortran £ B8 variant 6]
" . . o B8 variant 7 |
SIMD-ization R . N N U i e v —
c :
« Ready for profiling when we o
have KNL access — N TEUN S
. 1 = original :
. ~QO i
. Wmne.r..OnIy 8% speedup over 4=HSWwinner | ;
the original code 10° _— e R
1 2 4 6 8 12 148

— Only certain variants show
vectorization speedup on HSW

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science "9- WD&B

ST
P 3 A
3 \
B 2
% @ 7
) Z
S5 i

What does the code look like? E) (e

I$omp parallel do private(j,ztmp) Original
i=1, m

ztmp = (0.0d0, 0.0d0)

j = 1, ndiag Too many streams?

ztmp = ztmp + mat(j,i) * x(ind(j,i))

. . * = t
z(iorig(i)) = ztmp I$omp parallel do private(ztmp)

1=1, m
ztmp = mat(i, 1) * x(ind(i, 1))
] ztmp = ztmp + mat(i, 2) * x(ind(i, 2))
HSW winner ztmp = ztmp + mat(i, 3) * x(ind(i, 3))
. snip ...
z(iorig(i)) ztmp

I$omp parallel do private(ztmp)
i=1, m / SIMDWIDTH
7tmp = TCHE N R LICHEN N © Some traverse many streams of
ztmp = ztmp + mat(:, 2,i) * x(ind(:, 2,1i)) data concurrently
ztmp = ztmp + mat(:, 3,i) * x(ind(:, 3,1))

. — Others are more conservative
. snip ...

(including the winning variant)

z(iorig(i)) = ztmp

— Will the more bandwidth-hungry

% variants do better on KNL? Also
omitting alignment-related directives, etc. . .
show largest instruction coun =gk

s> "'%g U.S. DEPARTMENT OF Ofﬁce Of freeeee
i ENERGY scicnce -10- drop from AVX2 to AVX512. EE/R;i\'LE.‘!.H‘B

Improve OpenMP Scaling
Examples

YEARS

at the
FOREFRONT

1974-2014

2 U.S. DEPARTMENT OF 1 g A
‘ Office of P10

. ENERGY Science -11-

* This Intel compiler flag puts automatic arrays and temp of
size 64 kbytes or larger on heap instead of stack.

e Surprisingly it slows down both the collision and pushe
kernels by >6X.

* Allocation and access of private copies on the heap are very
expensive.

* Does not affect explicit-shape arrays.

 Removed this flag for the collision kernel, and set
OMP_STACKSIZE to a large value

* Run time improves from 348 sec to 43 sec.

e Alternative: use !SOMP THREADPRIVATE. Downside: data
has to be static, not allocatable.

Office of
Science

XGC1: Explore Nested OpenMP EZE e

* Always make sure to use best thread affinity. Avoid using threads across
NUMA domains.

e Currently:
export OMP_NUM_THREADS=6,4

export OMP_PROC_BIND=spread,close

export OMP_NESTED=TRUE

Export OMP_STACKSIZE=8000000

aprun -n 200-N 2-S 1 -j 2 -cc numa_node ./xgca

* |s a bit slower than (work ongoing):

export OMP_NUM_THREADS=24

export OMP_NESTED=TRUE

export OMP_STACKSIZE=8000000

aprun -n 200 -d 24 -N 2 -S 1 -j 2 -cc numa_node ./xgca

* Refer to NERSC “Nested OpenMP” web page for achieving process and
thread affinity using different compilers on different NERSC systems:

— https://www.nersc.gov/users/computational-systems/edison/running-jobs/
using-openmp-with-mpi/nested-openmp/

~

A
i

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -13- @a

o
P 3 e
£ ®
R &
s

NWChem: OpenMP “Reduce” Algorithm % Jis

 Plane wave Lagrange multiplier
* Many matrix multiplications of complex numbers, C=Ax B
« Smaller matrix products: FFM, typical size 100x10,000x100
» Original threading scaling with MKL not satisfactory
 OpenMP “Reduce” or “Block” algorithm
— Distribute work on A and B along the k dimension
- Athread puts its contribution in a buffer of size m x n
— Buffers reduced to produce C
- OMP teams of threads

258, U.S. DEPARTMENT OF Office of

© ’\\‘ ¥
@ ENERGY scionce j

NWChem: OpenMP “Reduce” Algorithm E e

Better for smaller inner dimensions, i.e. for FFMs

Multiple FFMs can be done concurrently in different thread pools
Threading enables us to use all 240 hardware threads

Best Reduce: 10 MPI, 6 teams of 4 threads

MKL Best “Reduce”
1MPI, 240 threads 10 MPI, 6 teams of 4 threads
MKL_KNC_1x240 - 240 threads 20 REDUCE_KNC_10x24 - 240 threads
0.9 0.9
0.8 0.8
0.7 0.7
062 06%

o
N

o
-

o
o

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -15- WE&B

<
A
rrrrrrr ‘"'|

RENTOr S
CERD
1S e)
), &
S5 i

NWChem: OpenMP Scaling in CCSD(T) CS e

* Double terms usually dominate in (T) term

* Other terms become new performance bottleneck on many-
core architectures - Amdahl’ s Law

Importance of Threading Everything

10000
»
o
c
3
z 1000 557
Q
E
= 270
é 100
= “®-0OMP for Doubles only
é -®=OMP for Doubles, Singles, and Sum
10
1 2 4 8 16 32 60 120 180 240
OMP_NUM_THREADS
U.S. DEPARTMENT OF Ofﬂce Of r“.:“_r ‘Iﬁl

ENERGY Science -16- WEN

T
£ 4
£ s \%)
% @ 4
2 %
S i

NWChem: OpenMP Scaling in CCSD(T) CS e

— Threading enables us to use all 240 hardware threads
— Optimized code performs 2.5X better than baseline
— Up to 65X better compared to 1 MPI rank

Optimized OpenMP

“®=Total Time
~*Time in Loop Nests

Baseline OpenMP 10000
10000

“®=Total Time

- ~#~Time in Loop Nests 0 .
2] T -
2 -#-Time in GetBlock & 1000 Time in GetBlack
g 1000 S
8 270 k)
o
2 121 E
= = 100
=
- 100 96 g 62
& @
10 10
1 2 4 8 16 32 60 120 180 240 1 2 4 8 16 32 60 120 180 240
OMP_NUM_THREADS OMP_NUM_THREADS

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -17- WE&B

<
A
rrrrrrr ""l

T
R
1S e)
& @ 7
AN
SO i

Vectorization Examples

YEARS

at the
FOREFRONT

1974-2014

2 U.S. DEPARTMENT OF 1 g A
‘ Office of P10

. ENERGY Science -18-

XGC1: Collision Kernel

Split dimensions,
interchange array
index, unroll loops,

YEARS

at the
FOREFRONT

NS “‘4

Original

Fension
(5, (col f nvr-1)*(col f nvz-1),

real (8

40% kernel speedup

Optimized

real (8),dime
(col £ nvr-1),5, (col f nvz-1),

(col f nvr-1)*(col f nvz-1)) :+/Ms

do index ip = 1, mesh Nzml

do index jp = 1, mesh Nrml

index 2dp = index jp+mesh Nrml* (index ip-1)

tmp vol = cs2%local center volume (index jp)

tmp f half v = £ half(index jp, index ip) *
tap:vol h B B B

tmp dfdr v = dfdr (index jp, index ip) *
tﬁp_voi B B

tmp dfdz v = dfdz (index jp, index ip) *
tﬁp_voi B B

pr(l:3)= tmpr(l:3)+
Ms (1:3,index 2dp,index 2D)*
tmp_f_half_v
tmpr(5) = CnMpr(9) +

4,index 2dp,index 2D) *tmp dfdr v +
2,index 2dp,index 2D)*tmp dfdz v

s
s
tmpr(= tmpr(6) +
s (
s

3 index 2dp,index 2D) *tmp dfdz v +
5,index 2dp,index 2D) *tmp_ dfdr v

enddo !1ndex_jp
enddo !index ip

U.S. DEPARTMENT OF Ofﬁce of

() ENERGY <o

_)rr L
col f nvr-1)*(col f nvz-1))

do index ip = 1, mesh Nzml
do index jp = 1, mesh Nrml
index_de index jp+mesh Nrml* (index ip-1)
tmp vol = cs2%local center Volume(lndex _Jp)

tmp_f half v = £ half(lndex _Jp, index ip) *
~ 7 tmp vol -

tmp dfdr v = dfdr(index jp, index ip) * tmp vol
tmp dfdz v = dfdz(index jp, index ip) *
T _

mpr (index)
P MS(l%géX]
tmp f half v
tmpr (index ,2) tmpr (index ,2) +
P MS(l%geX dps 2, gndex 1p,£gdex 2D) *
tmp £ haTlf v

(index jp,3)
ind

tmpr (index)
1, ? dex 1p,£géex 2D) *

@' I

©|H

mpr (1ndex _Jp,.3) +
1

ndex ipjin

<~

'_l

3

10)

X

_P

-
|H Tl

tm
3
tmpr (index Jjp,5) tmpr (index Jp,5) +
Ms (Iindex jp, 4, index 1p,1ndex 2D) *

tmp dfdr—v + s (index_ Jp,
2,index ip,index 2DJ* tmp dfdz v

tmpr(lndex Jjp, 6) = tmpr(lndex jp,6) +
Ms (Tndex jp,3 index ip;index 2D)*
tmp dfdz— Ms (index_ Jjp,

5,index_ip,lndex_2DT* tmp_dfdr_v
enddo !index jp

enddo !index ip

do i=1,6 N
tmpr (1,1i)=sum(tmpr(:,1i))

enddo

~

A
frreereer I"l

BERKELEY LAB

3X faster on

BerKEIGVGW SandyBridge, 8X b Sy 4 YEARS
faster on KNC YORERRONT
ISOMP DO reduction(+:achtemp) 0o o
do my_igp =1, ngpown g ngpown typically in
100’s to 1000s.
Good for many

threads.

doiw=1,3

scht=0D0
wxt = wx_array(iw)

Original inner loop.
Too small to |
vectorize! i

doig =1, ncouls

lif (abs(wtilde_array(ig,my_igp) _igp)) .It. TOL) cycle

wdiff =w tilde_array(ig,my_igp)
delw = wtilde_a ig,my_igp) / wdiff

ncouls typically in
1000s - 10,000s. |

* delw * eps(ig,my_igp)
. Good for

scha(ig) = mygpvarl * agsnte
scht = scht + scha(ig)

vectorization.

enddo ! loop over g
sch_array(iw) = sch_array(iw) + 0.5D0*scht

enddo Attempt to save
work breaks
vectorization and

makes code slower.

achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

enddo
g“fa,% U'S. DEPARTMENT OF ™ ~ ~ 'C)'ffl'c'e' 'O'f """"""""""""""""""""""""""""

Q2
SO

A
I}

EN ERGY Science ;R:‘a:!ﬁ

GCESM MG2 Kernel: OMP SIMD ALIGNED L < e

ISOMP SIMD ALIGNED (...)

OpenMP standard, portable

Tells the compiler that particular arrays in the list are aligned

Asserts there are no dependencies

Requires to use PRIVATE or REDUCTION clauses to ensure correctness

Forces the compiler to vectorize, whether or not it thinks if it helps
performance.

IDIRS ASSUME_ALIGNED (...)

Tells the compiler that particular arrays in the list are aligned
Intel specific, not portable

IDIRS VECTOR_ALIGNED

— Tells the compiler all arrays in a loop are aligned

o“‘"‘“""fa,‘ U.S. DEPARTMENT OF Ofﬂce Of

3 ENERGY science "2l 5;5\‘%3

Intel specific, not portable

N
A
rrrrrrr "“l

CESM MG2 Kernel: OMP SIMD ALIGNED E.Z e

* Using the “ALIGNED” attribute achieved 8% performance
gain when the list is explicitly provided.

* However, the process is tedious and error-prone, and often

times impossible in large real applications.

— ISOMP SIMD ALIGNED added in 48 loops in MG2 kernel, many with
list of 10+ variables

* Inquired with Fortran Standard:

— Equivalent of “ISDIR ATTRIBUTES ALIGNED: 64 :: A”
» C/C++ standard: float A[1000] __attribute__((aligned(64)));
* Not in Fortran standard yet
— Equivalent of the “-align array64byte” compiler flag
e Exist in Intel (Fortran only) and Cray compilers
* What about other compilers?

N
A
rrrrrrr "“l

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science BERKELEY LAB

o
LW
S/ \E
B 2
% @ %
NS

Using HBM Examples

A\ &K

NS |
YEARS
at the
FOREFRONT
1974-2014

~

g . _ A
£ @ U.S. DEPARTMENT OF Ofﬁce of P

ENERGY Science -23-

e YEARS

Simulate HBM Effect on a Dual Socket System i

* |dentify the candidate (key arrays) for HBM

— VTune Memory Access tool can help to find key arrays
— Using NUMA affinity to simulate HBM on a dual socket system

— Use FASTMEM directives and link with jemalloc/memkind libraries

On Edison (NERSC Cray XC30):
real, allocatable :: a(:,:), b(:,:), c(:) All All

Key
I IDIRS ATTRIBUTE FASTMEM :: 3, b, c Application | memory | memory | arrayson
% module load memkind jemalloc on far onnear | near
% ftn -dynamic -g -O3 -openmp mycode.f90 memory | mémory | memory
% export MEMKIND_HBW_NODES=0 BerkeleyGW baseline 52% 52.4%
faster faster
% aprun -n 1 -cc numa_node numactl --
membind=1 --cpunodebind=0 ./ EmGeo baseline 40% 32%
myexecutable faster faster
1 (o)
On Haswell: XGC1 baseline 24%
faster

% numactl --membind=1 --cpunodebind=0 ./
myexecutable

CERY, U.S. DEPARTMENT OF Office of

ENERGY Science -24-

= m YEARS
Conclusions LY Eow

e NERSC is bringing a lot of resources to help users: training,
postdocs, Cray and Intel staff, deep dive sessions.

e Optimizing code for Cori will likely require good OpenMP scaling,
Vectorization and/or effective use of HBM.

e Applications can optimize on SandyBridge, IvyBridge, Haswell,
and KNC architectures to prepare for Cori.

e Always profiling and understand your code first on where to
work on improving performance. Use tools such as VTune, vector
advisor.

e Creating kernels is much more efficient than working on full
codes.

e Optimizing your code targeting KNL will improve performance on
all architectures.

e Keep portability in mind, use portable programming models.

U.S. DEPARTMENT OF Office of

ENERGY Science "25- a;a\lts.ma

N
A
rrrrrrr ""|

ENT O
> o
“ B
% @ 5
RS

YEARS

at the
FOREFRONT

Thank you.

FA‘ U.S. DEPARTMENT OF Office of
(&)

ENERGY Science -26-

